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2
Constituency and Recursion in Language3

4 Morten H. Christiansen and Nick Chater

5 Introduction

6 Upon reflection, most people would agree that the words in a sen-
7 tence are not merely arranged like beads on a string. Rather, the
8 words group together to form coherent building blocks within a
9 sentence. Consider the sentence, The girl liked a boy. Intuitively,
10 the chunks the girl and liked a boy constitute the basic components
11 of this sentence (compared to a simple listing of the individual
12 words or alternative groupings, such as the girl liked and a boy).
13 Linguistically, these chunks comprise the two major constituents
14 of a sentence: a subject noun phrase (NP), the girl, and a verb
15 phrase (VP), liked a boy. Such phrasal constituents may contain
16 two types of syntactic elements: other phrasal constituents (e.g.,
17 the NP a boy in the above VP) or lexical constituents (e.g., the
18 determiner the and the noun girl in the NP the girl). Both types of
19 constituent are typically defined distributionally using the so-called
20 replacement test: If a novel word or phrase has the same distribu-
21 tion as a word or phrase of a known constituent type—that is if the
22 former can be replaced by the latter—then they are the same type
23 of constituent. Thus, the lexical constituents the and a both belong
24 to the lexical category of determiners because they occur in similar
25 contexts and therefore can replace each other (e.g., A girl liked the
26 boy). Likewise, the girl and a boy belong to the same phrasal cate-
27 gory, NP, because they can be swapped around, as in A boy liked
28 the girl (note, however, that there may be semantic constraints on
29 constituent replacements. For example, replacing the animate sub-
30 ject NP the girl with the inanimate NP the chair yields the seman-
31 tically anomalous sentence, The chair liked a boy).
32 In linguistics, grammar rules and/or principles determine how
33 constituents can be put together to form sentences. For instance,
34 we can use the following phrase structure rules to describe the
35 relationship between the constituents in the example sentences
36 above:

37 S r NP VP
NP r (det) N
VP r V(NP)38

39 Using these rules we obtain the following relationships between
40 the lexical and phrasal constituents:

41 [ [ [ The ][ girl ]][ [ liked ][ [ a ][ boy ]]]]S NP det N VP V NP det N

43 To capture the full generativity of human language, recursion
44 needs to be introduced into the grammar. We can incorporate re-
45 cursion into the above rule set by introducing a new rule that adds
46 a potential prepositional phrase (PP) to the NP:

47 NP r (det)N(PP)
PP r prep NP48

49 These rules are recursive because the expansion of the right-hand
50 sides of each can involve a call to the other. For example, the
51 complex NP the flowers in the vase has the simple NP the vase
52 recursively embedded within it. This process can be applied arbi-
53 trarily often, creating, for instance, the complex NP with three em-
54 bedded NPs:

55 [ the flowers [ in [ the vase [ on [ the tableNP PP NP PP NP

56 [ by [ the window]]]]]]]PP NP

58 Recursive rules can thus generate constructions of arbitrary com-
59 plexity.
60 Constituency and recursion are some of the most fundamental
61 concepts in linguistics. As we saw above, both are defined in terms
62 of relations between symbols. Symbolic models of language pro-
63 cessing therefore incorporate these properties by fiat. In this article,
64 we discuss how constituency and recursion may fit into a connec-
65 tionist framework and the possible implications for linguistics and
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66 psycholinguistics.

67 Constituency

68 Connectionist models of language processing can address constit-
69 uency in three increasingly radical ways. First, some connectionist
70 models are implementations of symbolic language processing mod-
71 els in “neural” hardware. Many early connectionist models of syn-
72 tax used this approach; an example is Fanty’s (1986) network im-
73 plementation of a context-free grammar. This kind of model
74 contains explicit representations of the constituent structure of a
75 sentence in just the same way as a nonconnectionist implementa-
76 tion of the same model would. Connectionist implementations of
77 this kind may be important; they have the potential to provide fea-
78 sibility proofs that traditional symbolic models of language pro-
79 cessing are compatible with a “brain-style” computational archi-
80 tecture. But these models add nothing new with respect to the
81 treatment of constituency.
82 The remaining two classes of connectionist models learn to pro-
83 cess constituent structure, rather than having this ability hardwired.
84 One approach is to have a network learn from input “tagged” with
85 information about constituent structure. For example, Kim, Srini-
86 vas, and Trueswell (in 2002) train a network to map a combination
87 of orthographic and co-occurrence-based “semantic” information
88 about a word onto a structured representation encoding the minimal
89 syntactic environment for that word. With an input vocabulary con-
90 sisting of 20,000 words, this model has an impressive coverage and
91 can account for certain results from the psycholinguistic literature
92 concerning ambiguity resolution in sentence processing. But be-
93 cause constituent structure has been “compiled” into the output
94 representations that the network was trained to produce, this kind
95 of model does not offer any fresh insight into how linguistic con-
96 stituency might operate, based on connectionist principles.
97 The third class of connectionist models addresses the more am-
98 bitious problem of learning the constituent structure of a language
99 from untagged linguistic input. Such models have the potential to
100 develop a new or unexpected notion of constituency, and hence
101 may have substantial implications for theories of constituency in
102 linguistics and psycholinguistics.
103 To understand how the more radical connectionist models ad-
104 dress constituency, we need to frame the problem more generally.
105 We can divide the problem of finding constituent structure in lin-
106 guistic input of a language into two interrelated parts: segmenting
107 the sentence into chunks that correspond, to some extent, to lin-
108 guistic constituents, and categorizing these units appropriately. The
109 first problem is an aspect of the general problem of segmenting
110 speech into appropriate units (e.g., phonemes, words) and more
111 generally is an aspect of perceptual grouping. The second problem
112 is an aspect of the general problem of classifying linguistic units—
113 for instance, recognizing different classes of phonemes or estab-
114 lishing the parts of speech of individual lexical items. The
115 segmentation and classification problems need not be solved se-
116 quentially. Indeed, there may be mutual influence between the de-
117 cision to segment a particular chunk of language and the decision
118 that it can be classified in a particular way. Nonetheless, it is useful
119 to keep the two aspects of the analysis of constituency conceptually
120 separate.
121 It is also important to stress the difference between the problem
122 of assigning constituent structure to novel sentences where the lan-
123 guage is known and the problem of acquiring the constituent struc-
124 ture of an unknown language. Statistical symbolic parsers are able
125 to make some inroads into the first problem (Charniak, 1993). For
126 highly stylized language input, and given a prestored grammar,
127 they can apply grammatical knowledge to establish one or more
128 possible constituent structures for novel sentences. But symbolic
129 methods are much less advanced in acquiring the constituent struc-
130 ture of language, because this requires solving the hard problem of
131 learning a grammar from a set of sentences generated by that gram-
132 mar. It is therefore in relation to the acquisition of constituency
133 that connectionist methods, with their well-developed learning
134 methods, have attracted the most interest.
135 We begin by considering models that focus on the problem of
136 classifying, rather than segmenting, the linguistic input. One con-
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137 nectionist model (Finch and Chater, 1993) learns the part of speech
138 of individual words by clustering words together on the basis of
139 the immediate linguistic contexts in which they occur. The rationale
140 is based on the replacement test mentioned earlier: if two words
141 are observed to occur in highly similar immediate contexts in a
142 corpus, they probably belong to the same syntactic category. Finch
143 and Chater used a single-layer network with Hebbian learning to
144 store co-occurrences between “target” words and their near neigh-
145 bors. This allowed each target word to be associated with a vector
146 representing the contexts in which it typically occurred. A com-
147 petitive learning network classified these vectors, thus grouping
148 together words with similar syntactic categories. This method is
149 able to operate over unrestricted natural language, in contrast to
150 most symbolic and connectionist models. From a linguistic per-
151 spective, the model slices lexical categories too finely, producing,
152 for example, many word classes that correspond to nouns or verbs.
153 On the other hand, the words within a class tend to be semantically
154 related, which is useful from a cognitive perspective. The same
155 method can be extended to classify sequences of words as NPs,
156 VPs, etc. An initial classification of words is used to recode the
157 input as a sequence of lexical constituents. Then, short sequences
158 of lexical constituents are classified by their context, as before. The
159 resulting groups of “phrases” (e.g., determiner-adjective-noun) are
160 readily interpretable as NPs, and so on, but again, these groupings
161 are too linguistically restrictive (i.e., only a small number of NPs
162 are included in any particular cluster). Moreover, this phrasal level
163 classification has not yet been implemented in a connectionist net-
164 work.
165 A different attack on the problem of constituency involves train-
166 ing simple recurrent networks (SRNs) on linguistic input (Elman,
167 1990). An SRN involves a crucial modification to a feedforward
168 network: the current set of hidden unit values is “copied back” to
169 a set of additional input units, and paired with the next input to the
170 network. The current hidden unit values can thus directly affect the
171 next hidden unit values, providing the network with a memory for
172 past inputs. This enables it to tackle sentence processing, where the
173 input is revealed gradually over time rather than being presented
174 at once.
175 Segmentation into constituents can be achieved in two ways by
176 an SRN trained to predict the next input. One way is based on the
177 assumption that predictability is higher within a constituent than
178 across constituent boundaries, and hence that high prediction error
179 indicates a boundary. This method has been advocated as poten-
180 tially applicable at a range of linguistic levels (Elman, 1990), but
181 in practice it has been successfully applied only on corpora of un-
182 restricted natural language input in finding word boundaries (Cairns
183 et al., 1997). Even here, the prediction strategy is a very partial cue
184 to segmentation. If the network is provided with information about
185 naturally occurring pauses between utterances (or parts of utter-
186 ances), an alternative method is to assume that constituent bound-
187 aries occur where the network has an unusually high expectation
188 of an utterance boundary. The rationale is that pauses tend to occur
189 at constituent boundaries, and hence the prediction of a possible
190 utterance boundary suggests that a constituent boundary may have
191 occurred. This approach seems highly applicable to segmenting
192 sentences into phrases, but it, too, has primarily been used for find-
193 ing word boundaries in real corpora of language, when combined
194 with other cues (Christiansen, Allen, and Seidenberg, 1998).
195 So far we have considered how SRNs might find constituents.
196 But how well do they classify constituents? At the word level,
197 cluster analysis of hidden unit activations shows that, to some ex-
198 tent, the hidden unit patterns associated with different word classes
199 group naturally into syntactic categories, for SRNs trained on sim-
200 ple artificial grammars (Elman, 1990). These results are important
201 because they show that even though the SRN may not learn to
202 classify constituents explicitly, it is nevertheless able to use this
203 information to process constituents appropriately.
204 Another way of assessing how SRNs have learned constituency
205 is to see if they can generalize to predicting novel sentences of a
206 language. The logic is that to predict successfully, the SRN must
207 exploit linguistic regularities that are defined across constituents,
208 and hence develop a notion of constituency to do so. However,
209 Hadley (1994) points out that this type of evidence is not compel-
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210 ling if the novel sentences are extremely similar to the network’s
211 training sentences. He suggests that, to show substantial evidence
212 for generalization across constituents, the network should be able
213 to handle novel sentences in which words appears in sentence lo-
214 cations where they have not previously occurred (see SYSTEMACITY

215 OF GENERALIZATIONS IN CONNECTIONIST NETWORKS). For exam-
216 ple, a novel sentence might involve a particular noun in object
217 position, where it has previously occurred only in subject position.
218 To generalize effectively, the network must presumably develop
219 some abstract category of nouns. Christiansen and Chater (1994)
220 demonstrated that an SRN can show this kind of generalization.
221 Despite this demonstration, though, connectionist models do not
222 mirror classical constituency precisely. That is, they do not derive
223 rigid classes of words and phrases that are interchangeable across
224 contexts. Rather, they divide words and phrases into clusters with-
225 out precisely defined boundaries, and they treat words and phrases
226 differently, depending on the linguistic contexts in which they oc-
227 cur. This context-sensitive constituency can be viewed either as the
228 undoing of connectionist approaches to language or as their radical
229 contribution.
230 The potential problem with context-sensitive constituency is the
231 productivity of language. To take Chomsky’s famous example,
232 how do we know that the statement colorless green ideas sleep
233 furiously is syntactically correct, except by reference to a context-
234 insensitive representation of the relevant word classes? This seems
235 necessary, because each word occurs in a context in which it has
236 rarely been encountered before. But Allen and Seidenberg (1999)
237 argue that this problem may not be fatal for context-sensitive no-
238 tions of constituency. They trained a network to mutually associate
239 two input sequences, a sequence of word forms and a correspond-
240 ing sequence of word meanings. The network was able to learn a
241 small artificial language successfully: it was able to regenerate the
242 word forms from the meanings, and vice versa. Allen and Seiden-
243 berg then tested whether the network could recreate a sequence of
244 word forms presented to it, by passing information from form to
245 meaning and back. Ungrammatical sentences were recreated less
246 accurately than grammatical sentences, and the network was thus
247 able to distinguish grammatical from ungrammatical sentences. Im-
248 portantly, this was true for sentences in which words appeared in
249 novel combinations, as specified by Hadley’s criterion and as ex-
250 emplified by Chomsky’s famous sentence. Thus, the context-
251 sensitivity of connectionist constituency may not rule out the pos-
252 sibility of highly creative and novel use of language, because
253 abstract relations may be encoded at a semantic level as well as at
254 the level of word forms.
255 If the apparent linguistic limitations of context-sensitive con-
256 stituency can be overcome, then the potential psychological con-
257 tribution of this notion is enormous. First, context sensitivity seems
258 to be the norm throughout human classification. Second, much data
259 on sentence processing seem most naturally to be explained by
260 assuming that constituents are represented in a fuzzy and context-
261 bound manner. The resulting opportunities for connectionist mod-
262 eling of language processing are extremely promising. Thus, con-
263 nectionist research may provide a more psychologically adequate
264 notion of constituency than is currently available in linguistics.

265 Recursion

266 As with constituency, connectionist models have dealt with recur-
267 sion in three increasingly radical ways. The least radical approach
268 is to hardwire recursion into the network (e.g., as in Fanty’s (1986)
269 implementation of phrase structure rules) or to add an external sym-
270 bolic (“first-in-last-out”) stack to the model (e.g., as in Kwasny and
271 Faisal’s (1990) deterministic connectionist parser). In both cases,
272 recursive generativity is achieved entirely through standard sym-
273 bolic means, and although this is a perfectly reasonable approach
274 to recursion, it adds nothing new to symbolic accounts of natural
275 language recursion. The more radical connectionist approaches to
276 recursion aim for networks to learn to deal with recursive structure.
277 One approach is to construct a modular system of networks, each
278 of which is trained to acquire different aspects of syntactic pro-
279 cessing. For example, Miikkulainen’s (1996) system consists of
280 three different networks: one trained to map words onto case-role
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281 assignments, another trained to function as a stack, and a third
282 trained to segment the input into constituent-like units. Although
283 the model displays complex recursive abilities, the basis for these
284 abilities and their generalization to novel sentence structures derive
285 from the configuration of the stack network combined with the
286 modular architecture of the system, rather than being discovered
287 by the model. The most radical connectionist approaches to recur-
288 sion attempt to learn recursive abilities with minimal prior knowl-
289 edge built into the system. In this type of model, the network is
290 most often required to discover both the constituent structure of
291 the input and how these constituents can be recursively assembled
292 into sentences. As with the similar approach to constituency de-
293 scribed in the previous section, such models may provide new in-
294 sights into the notion of recursion in human language processing.
295 Before discussing these modeling efforts, we need to assess to
296 what extent recursion is observed in human language behavior. It
297 is useful to distinguish simple and complex recursion. Simple re-
298 cursion consists in recursively adding new material to the left (e.g.,
299 the adjective phrases (AP) in the gray cat r the fat gray cat r the
300 ugly fat gray cat or the right (e.g., the PPs in the flowers in the vase
301 r the flowers in the vase on the table r the flowers in the vase on
302 the table by the window) of existing phrase material. In complex
303 recursion, new material is added in more complicated ways, such
304 as through center-embedding of sentences (The chef admired the
305 musicians r The chef whom the waiter appreciated admired the
306 musicians). Psycholinguistic evidence shows that people find sim-
307 ple recursion relatively easy to process, whereas complex recursion
308 is almost impossible to process with more than one level of recur-
309 sion. For instance, the following sentence with two levels of simple
310 (right-branching) recursion, The busboy offended the waiter who
311 appreciated the chef who admired the musicians, is much easier to
312 comprehend than the comparable sentence with two levels of com-
313 plex recursion, The chef whom the waiter whom the busboy of-
314 fended appreciated admired the musicians. Because recursion is
315 built into the symbolic models, there are no intrinsic limitations on
316 how many levels of recursion can be processed. Instead, such mod-
317 els must invoke extrinsic constraints to accommodate the human
318 performance asymmetry on simple and complex constructions. The
319 radical connectionist approach models human performance directly
320 without the need for extrinsic performance constraints.
321 The SRN model developed by Elman (1991) was perhaps the
322 first connectionist attempt to simulate human behavior on recursive
323 constructions. This network was trained on sentences generated by
324 a small context-free grammar incorporating center-embedding and
325 a single kind of right-branching recursive structure. In related work,
326 Christiansen and Chater (1994) trained SRNs on a recursive arti-
327 ficial language incorporating four kinds of right-branching struc-
328 tures, a left-branching structure, and center-embedding. The be-
329 havior of these networks was qualitatively comparable with human
330 performance in that the SRN predictions for right-branching struc-
331 tures were more accurate than on sentences of the same length
332 involving center-embedding, and performance degraded appropri-
333 ately as the depth of center-embedding increased. Weckerly and
334 Elman (1992) further corroborated these results, suggesting that
335 semantic bias (incorporated via co-occurrence restrictions on the
336 verbs) can facilitate network performance in center-embedded con-
337 structions, similar to the semantic facilitation effects found in hu-
338 man processing. Using abstract artificial languages, Christiansen
339 and Chater (1999) showed that the SRN’s general pattern of per-
340 formance is relatively invariant across network size and training
341 corpus, and concluded that the human-like pattern of performance
342 derived from intrinsic constraints inherent to the SRN architecture.
343 Connectionist models of recursive syntax typically use “toy”
344 fragments of grammar and small vocabularies. Aside from raising
345 concerns over scaling-up, this makes it difficult to provide detailed
346 fits with empirical data. Nonetheless, some attempts have recently
347 been made to fit existing data and derive new empirical predictions
348 from the models. For example, the Christiansen and Chater (1999)
349 SRN model fits grammaticality ratings data from several behavioral
350 experiments, including an account of the relative processing diffi-
351 culty associated with the processing of center-embeddings (with
352 the following relationship between nouns and verbs:
353 N1N2N3V3V2V1) versus cross-dependencies (with the following re-
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354 lationship between nouns and verbs: N1N2N3V1V2V3). Human data
355 have shown that sentences with two center-embeddings (in Ger-
356 man) are significantly harder to process than comparable sentences
357 with two cross-dependencies (in Dutch). The simulation results
358 demonstrated that the SRNs exhibited the same kind of qualitative
359 processing difficulties as humans on these two types of complex
360 recursive constructions.
361 Just as the radical connectionist approach to constituency devi-
362 ates from classical constituency, the above approach to recursion
363 deviates from the classical notion of recursion. The radical models
364 of recursion do not acquire “true” recursion because they are unable
365 to process infinitely complex recursive constructions. However, the
366 classical notion of recursion may be ill-suited for capturing human
367 recursive abilities. Indeed, the psycholinguistic data suggest that
368 people’s performance may be better construed as being only quasi-
369 recursive. The semantic facilitation of recursive processing, men-
370 tioned earlier, further suggests that human recursive performance
371 may be partially context-sensitive. For example, the semantically
372 biased The bees that the hive that the farmer built housed stung
373 the children is easier to comprehend than the neutral The chef that
374 the waiter that the busboy offended appreciated admired the mu-
375 sicians, even though both sentences contain two center-
376 embeddings. This dovetails with the context-sensitive notion of
377 constituency and suggests that context sensitivity may be a more
378 pervasive feature of language processing than is typically assumed
379 by symbolic approaches.

380 Discussion

381 This article has outlined several ways in which constituency and
382 recursion may be accommodated within a connectionist frame-
383 work, ranging from direct implementation of symbolic systems to
384 the acquisition of constituency and recursion from untagged input.
385 We have focused on the radical approach, because this approach
386 has the greatest potential to affect psycholinguistics and linguistic
387 theory. However, much of this research is still preliminary. More
388 work is needed to decide whether the promising but limited initial
389 results can eventually be scaled up to deal with the complexities
390 of real language input, or whether a radical connectionist approach
391 is beset by fundamental limitations. Another challenge is to find
392 ways—theoretically and practically—to interface models that have
393 been proposed at different levels of linguistic analyses, such as
394 models of morphology with models of sentence processing.
395 Nevertheless, the connectionist models described in this article
396 have already influenced the study of language processing. First,
397 connectionism has helped promote a general change toward re-
398 placing “box-and-arrow” diagrams with explicit computational
399 models. Second, connectionism has reinvigorated the interest in
400 computational models of learning, including learning properties,
401 such as recursion and constituent structure, that were previously
402 assumed to be innate. Finally, connectionism has helped increase
403 interest in the statistical aspects of language learning and process-
404 ing.
405 Connectionism has thus already had a considerable impact on
406 the psychology of language. But the final extent of this influence
407 depends on the degree to which practical connectionist models can
408 be developed and extended to deal with complex aspects of lan-
409 guage processing in a psychologically realistic way. If realistic con-
410 nectionist models of language processing can be provided, then the
411 possibility of a radical rethinking not just of the nature of language
412 processing, but of the structure of language itself, may be required.

413 Roadmap: Linguistics and Speech Processing
414 Background: Language Processing
415 Related Reading: Language Acquisition; Recurrent Networks, Learning
416 Algorithms
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