
When ‘More’ in Statistical Learning Means ‘Less’ in Language:  
Individual Differences in Predictive Processing of Adjacent Dependencies 

 
Jennifer B. Misyak (jbm36@cornell.edu) 

Morten H. Christiansen (christiansen@cornell.edu) 
Department of Psychology, Cornell University, Ithaca, NY 14853 USA 

 
 

Abstract 
Although statistical learning (SL) is widely assumed to play a 
key role in language, few empirical studies aim to directly and 
systematically link variation across SL and language. In this 
study, we build on prior work linking differences in 
nonadjacent SL to on-line language, by examining individual-
differences in adjacent SL. Experiment 1 documents the 
trajectory of adjacency learning and establishes an individual-
differences index for statistical bigram learning. Experiment 2 
probes for within-subjects associations between adjacent SL 
and on-line sentence processing in three different contexts 
(involving embedded subject-object relative-clauses, thematic 
fit constraints in reduced relative-clause ambiguities, and 
subject-verb agreement). The findings support the notion that 
proficient adjacency skills can lead to an over-attunement 
towards computing local statistics to the detriment of more 
efficient processing patterns for nonlocal language 
dependencies. Finally, the results are discussed in terms of 
questions regarding the proper relationship between adjacent 
and nonadjacent SL mechanisms. 

Keywords: Predictive Dependencies; Sentence Processing; 
Bigrams; Serial Reaction Time; Artificial Grammar 

Introduction 
With the expansion of studies on statistical learning (SL) 
over the past decades, focus has intensified towards probing 
the potential role for probabilistic sequence learning 
capabilities in acquiring and using linguistic structure (e.g., 
Gómez, 2002; Saffran, 2001). A clearer understanding has 
in turn begun to crystallize about the ways in which SL 
mechanisms may underpin language across various levels of 
organization—phonetic, lexical, semantic, syntactic—and 
across differing timescales—phylogenetic, ontogenetic, and 
microsecond unfoldings. Largely missing from this picture, 
however, is empirical evidence that directly links language 
and SL abilities within the typical population. 

There are, though, a few recent studies that address the 
issue of whether better statistical learners are indeed better 
processors of language. In a small-scale study of individual 
differences, Misyak and Christiansen (2007) observed that 
standard measures of SL performance are positively 
associated with comprehension accuracy for various 
sentence-types in natural language. Conway, 
Bauernschmidt, Huang and Pisoni (2010) reported that 
better SL performance correlates with better processing of 
perceptually-degraded speech in highly-predictive lexical 
contexts. Misyak, Christiansen and Tomblin (2010) found 
that more-skilled statistical learners of nonadjacent structure 
were also more adept at the on-line processing of long-
distance dependencies in natural language. Thus far, these 

results would support the general assumption that SL and 
language processes are systematically interrelated, with 
positive correspondence in intraindividual variation across 
them. But is it always the case that greater SL is associated 
with better language functioning? Or, may excelling at one 
of these implicate poorer performance at the other? 

Such ability-linked reversals in performances within a 
cognitive domain would not be unprecedented. As an 
example, bilingual individuals appear to possess more 
efficient ‘inhibitory control’ processes than their 
monolingual peers across a number of studies, which has 
usually been imputed in some manner to bilinguals’ greater 
experience with ‘control’ processes for suppressing 
irrelevant information in the course of successfully using 
two languages (see Bialystok et al., 2004). However, in a 
negative priming paradigm where distractor locations that 
were supposed to be previously ignored became relevant for 
facilitating responses to a current trial (as they do for 
monolinguals), bilinguals are at a disadvantage in the 
cognitive control task, with decreases from a neutral 
baseline in performance accuracy (Trecanni et al., 2009). 
Analogously then, might there be natural language contexts 
in which superior SL skill also becomes disadvantageous? 

One possibility is that a statistical learner may focus too 
much on computing certain statistics, while ignoring others, 
with repercussions for their linguistic processing. For 
example, language embodies predictive dependencies that 
can be broadly characterized as involving either adjacent or 
nonadjacent temporal relationships. Thus, a good adjacency 
learner might perform poorly on nonadjacent dependencies 
in language. Introducing a new task for documenting micro-
level trajectories and individual differences in SL, Misyak et 
al. (2010) were able to link variation in nonadjacent SL 
positively to signature differences in reading time patterns 
for the complex nonlocal dependency structure of center-
embedded object-relative clause sentences. However, this 
study raises a new set of questions, including ones that 
directly bear on the above hypothetical, namely: Does the 
timecourse of adjacent SL differ from that of nonadjacent 
SL? Can substantial differences in adjacent SL also be 
empirically related to on-line sentence processing? And if 
so, might this differ from the kinds of positive correlations 
observed for nonadjacency processing? 

We investigated these questions by adapting the AGL-
SRT paradigm from Misyak et al. (2010) to isolate the 
learning of adjacent dependencies. The task implements an 
artificial grammar (AG) within a modified two-choice serial 
reaction-time (SRT) layout, using auditory-visual sequence-
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strings as input. Experiment 1 thus documents the group 
trajectory and range of individual differences for adjacency 
learning obtained from this task. A ‘bigram index’ reflecting 
individual differences in adjacency learning is then used to 
probe relationships to the processing patterns observed in 
our subsequent natural language experiment (Experiment 2). 

Experiment 1: Statistical Learning of 
Adjacencies in the AGL-SRT Paradigm 

The ability of humans to use adjacent statistical information 
has been demonstrated across various studies. As early as 
two months of age, humans can identify bigrams, or first-
order adjacent pairs, from the co-occurrence frequencies of 
elements within a constrained temporal sequence (Kirkham, 
Slemmer & Johnson, 2002). Throughout later development 
and adulthood, humans can also use adjacent conditional 
probabilities to locate relevant constituent-boundaries in a 
continuous stream composed of nonwords, tones, visual 
elements, or nonlinguistic sounds (see Gebhart, Newport & 
Aslin, 2009, for a review). And further, both children and 
adults can learn adjacent predictive dependencies that signal 
the underlying phrase structure of an artificial language 
(Saffran, 2001). 

Below, we adapt the biconditional grammar of Jamieson 
and Mewhort (2005) to examine adults’ SL of bigrams. This 
grammar was chosen since it is defined by first-order 
transitions only, imposes no positional constraints on 
element placement, and generates strings of equal length. 
These merits thereby permit us to effectively isolate the 
learning of predictive adjacencies by our participants. 

Method 
Participants Thirty native English speakers from the 
Cornell undergraduate population (15 females; age: M=19.4, 
SD=0.8) were recruited for course credit. 
Materials Participants observed sequences of auditory-
visual strings generated by an eight-element grammar in 
which every element could be followed by one of only two 
other elements, with equal probability. Each string consisted 
of 4 elements, with adjacent probabilities between them as 
shown in Table 1.The nonwords (jux, tam, hep, sig, nib, cav, 
biff, and lum) were randomly assigned to the stimulus 
tokens (a,  b,  c,  d , e,  f,  g,  h) for each  participant to avoid  

 Element at position n +1 of string 
Element 

at n a b c d e f g h 

a 0 .5 .5 0 0 0 0 0 
b 0 0 .5 .5 0 0 0 0 
c 0 0 0 .5 .5 0 0 0 
d 0 0 0 0 .5 .5 0 0 
e 0 0 0 0 0 .5 .5 0 
f 0 0 0 0 0 0 .5 .5 
g .5 0 0 0 0 0 0 .5 
h .5 .5 0 0 0 0 0 0 

potential learning biases due to specific sound properties of 
words. Auditory versions of the nonwords were recorded 
from a female native English speaker and length-edited to 
550 ms. Written versions of nonwords were presented with 
standard spelling in Arial font (all caps) and appeared within 
the rectangles of a 2 x 4 computer grid (see Figure 1). Each 
of the 4 columns of the computer grid, from left to right, 
displayed the nonword options corresponding to the 1st thru 
4th respective elements of a string. Ungrammatical strings 
were created by introducing an incorrect element at the 2nd 
or 3rd string position, with the next element being one that 
legally followed the incorrect one (e.g., as in “a *d e g”). 
Procedure Each trial corresponded to a different 
configuration of the grid, with each of the eight written 
nonwords centered in one of the rectangles. Every column 
contained a nonword (target) from a stimulus string, as well 
as a foil. The first column contained the selection for the 
first element of a string, the second column contained the 
selection for the second element, and so on. For example, a 
trial with the stimulus string jux cav lum nib, as shown in 
Figure 1, might contain the target jux and the foil hep in the 
first column; the target cav and the foil biff in the second 
column; the target lum and the foil sig in the third column; 
and the target nib and the foil tam in the fourth column. 
Each nonword appeared equally often as target and as foil 
within and across the columns. The top/bottom locations of 
targets and foils were randomized and counterbalanced.  

Participants were informed that the purpose of the grid 
was to display their selections and that a computer program 
randomly determines a target’s location within either the top 
or bottom rectangle. On every trial, participants heard an 
auditory stimulus string composed of four nonwords and 
were instructed to respond to each nonword in the sequence 
as soon and as accurately as possible by using the computer 
mouse to select the rectangles displaying the correct targets.  

Thus for any given trial, after 250 ms of familiarization to 
the visually presented nonwords, the first nonword of a 
string (the target) was played over headphones. Next, the 
second, third, and fourth words of a given string were each 
played after a participant had responded in turn to the prior 
nonword. For example, on a trial with the stimulus string jux 
cav lum nib, the participant should first click the rectangle 
containing JUX upon hearing jux (Fig. 1, left), CAV upon next 
hearing cav (Fig. 1, center-left), LUM upon hearing lum (Fig. 

Table 1: Transition probabilities for elements at positions n 
and n + 1 of a string, with n as an integer from (0, 4). 

Figure 1: The pattern of mouse clicks for a single trial 
with the auditory target string “jux cav lum nib.” 
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1, center-right), and NIB upon hearing nib (Fig. 1, right). 
After a participant had responded to the last nonword, the 
screen cleared for 750 ms before a new trial began. 

An intended consequence of this design is that, for any 
given trial, the first element of a string cannot be anticipated 
in advance of hearing the auditory target. However, all 
subsequent string transitions might be reliably anticipated 
using statistical knowledge of the bigram structure. Thus, as 
participants become sensitive to the bigrams, they should be 
able to anticipate the string transitions, which should be 
evidenced by faster response times (following standard SRT 
rationale). Accordingly, our dependent measure on each trial 
was the reaction time (RT) for a predictive target, subtracted 
from the RT for the non-predictive initial-column target 
(which serves as a baseline and controls for practice 
effects). The predictive target used in this calculation was 
equally distributed across all non-initial columns across 
trials. Analogously, for an ungrammatical string trial, if 
participants are sensitive to the bigrams, then their RTs for 
incorrect, or violated, elements should be slower; thus, the 
DV for ungrammatical trials was the RT for the illegal 
target subtracted from the initial-target RT.  

There are 64 unique strings (8 x 2 x 2 x 2) defined by the 
grammar; these were all randomly presented once each for 
each grammatical block of trials. Training consisted of six 
grammatical blocks, followed by an ungrammatical block of 
16 trials and then a single grammatical (‘recovery’) block. 
Transitions across blocks were seamless and unannounced. 

After these eight blocks, participants were informed that 
the strings had been generated according to rules specifying 
the ordering of nonwords and were asked to complete two 
tasks involving prediction and bigram recognition, 
respectively. The prediction task consisted of 16 trials that 
were procedurally similar to the trials observed during 
training, but with the omission of the auditory target for the 
final column.1 Instead, participants were told to select that 
nonword in the final column that they believed best 
completed the sequence. 

In the bigram task, participants were randomly presented 
with 32 test items of auditory nonword-pairs. They were 
requested to judge whether each pair followed the rules of 
the grammar by pressing ‘yes’/’no’ computer keys. Half of 
the test items were the 16 bigrams licensed by the grammar 
(e.g., a b); the remaining half were illegal pairings formed 
by reversing each bigram (e.g., b a). Thus, successful 
discrimination reflects knowledge of the conditional 
bigrams, rather than only sensitivity to co-occurrences. 

Results and Discussion 
Analyses were performed on only ‘good’ trials—that is, 
accurate string-trials with only one selection for each target. 
                                                             

1 Instructing participants to complete string endings allows for 
maximal procedural similarity to the speeded training trials without 
introducing additional cue prompts that would be needed if the 
aurally-omitted element varied across non-initial columns. It also 
avoids any indirect feedback effects from presenting the next 
element after a participant’s correct/incorrect medial selection. 

Prior to analysis, the data from five participants were 
omitted (2 for withdrawing participation; 2 for improperly 
performing the task, with less than 40% good trials; and 1 
for abnormally elevated RTs, averaging in excess of 1470 
ms per single response). For remaining participants, good 
trials averaged 88.2% (SD=5.9) of training block trials.  

Mean RT difference scores, as described above (i.e., for 
grammatical trials: initial-target minus predictive-target RT; 
for ungrammatical trials: initial-target minus illegal-target 
RT) were computed for each block and submitted to a one-
way repeated-measures analysis of variance (ANOVA) with 
block as the within-subjects factor. Since the assumption of 
sphericity was violated (χ2(27) = 113.27, p <.001), degrees 
of freedom were corrected using Greenhouse-Geisser 
estimates (ε = .33). Results indicated a main effect of block 
on RT difference scores, F (2.31, 55.36) = 3.82, p =.02. As 
seen in Figure 2, mean RT difference scores appear to 
increase by the final training block, decrease in the 
ungrammatical block, and increase once again in the 
recovery block. As RT difference scores measure the 
amount of facilitation from the predictive targets, an 
improvement in scores across blocks (as seen here) reflects 
sensitivity to the adjacent dependencies. 

Planned contrasts between the ungrammatical block and 
preceding/succeeding grammatical blocks confirmed a 
performance decline for the ungrammatical trials (Block 6 
minus Block 7: M= -42.0 ms, SE=19.6, t(24) = 2.14, p =.04; 
Block 8 minus Block 7: M= 39.8 ms, SE=17.8 ms, t(24) = 
2.23, p =.04). This provides evidence for participants’ 
learning of the sequential dependencies, consistent with 
standard interpretations in the sequence learning literature 
for comparing RTs to structured versus unstructured 
material (e.g., Thomas and Nelson, 2001). 

Since the amount of exposure to the dependencies during 
training is equivalent to that which a similar number of 
participants (n=30) received in the Misyak et al. (2010) 
study of nonadjacent SL, this invites a comparison of group 
learning trajectories. The RT timecourse pattern 
documented here for adjacent SL is very similar to that 
observed for nonadjacent SL, but with greater variance in 

Figure 2: Group learning trajectory (mean RT difference 
scores per block) and accuracy for prediction (left bar) and 

bigram (right bar) tasks. 
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performance for the final training block and with ostensibly 
more modest (albeit not statistically different) performance 
in the recovery block. In both cases, sensitivity to the 
statistical structure does not show signs of emerging until 
after considerable exposure (the 5th block of training). 

Mean accuracy on the prediction task was 55.3% 
(SD=17), which was not above chance (t(24) = 1.51, p 
=.14)—despite 20% of participants scoring at or above 75%. 
However, accuracy on the bigram task reflected adjacency 
learning (t(24) = 4.66, p <.0001), with a mean of 57.6%. 
This performance level is consistent with participants’ 
judgment accuracy in an AGL study with manipulations of 
this same type of grammar when participants are tested with 
ungrammatical items containing few rule violations 
(Jamieson & Mewhort, 2009). Bigram scores further ranged 
from 37.5 – 71.9%, but with less variance (SD=8) than that 
observed in the prediction task. In post-study questioning, 
only four participants disclosed that they had noticed any 
general pattern in the sequence but were unable to verbalize 
at least one instance of a bigram, suggesting that their 
performance in the bigram task was not the product of 
explicit recall or well-formulated meta-knowledge. Next, we 
use scores on this bigram index to assess whether and how 
variation in adjacent SL may be associated with differences 
in processing local and nonlocal language dependencies. 

Experiment 2: Individual Differences in 
Language Processing and Statistical Learning 

Sensitivity to both local and long-distance relationships is 
indispensable to processing natural language, and pervades 
basic aspects of our everyday sentence comprehension and 
production—such as those involved in relating the modified 
subject/object of a described action or state to the main 
event of a sentence (embedded relative clauses), in 
identifying whether someone is the recipient or doer of an 
action (agent-patient thematic roles), and in correctly 
linking subjects with their verbs (number agreement). The 
aim of Experiment 2 is to investigate whether predictive 
processing as exemplified by adjacent SL is empirically 
related to the on-line processing of such natural language 
contexts. Consider the following examples of the sentence-
types that constitute the focus of the current experiment. 

(1a-b)  The reporter [that attacked the senator / that the 
senator attacked] admitted the error. 

(2a-b)  The [crook/cop] arrested by the detective was 
guilty of taking bribes. 

(3a-b)  The key to the [cabinet/cabinets] was rusty from  
many years of disuse. 

In the first sentence example, the subject-relative (SR; 1a) 
and the object-relative (OR; 1b) versions differ with respect 
to the manner in which the embedded verb attacked relates 
to its object. This involves a more complex, backwards-
tracking long-distance dependency (to the head-noun) for 
ORs. In prior studies using materials resembling those in 
(1a-b), greater processing difficulty is elicited at the main 
verb of ORs compared to that of SRs, with considerable 

individual differences in the magnitude of this effect (e.g., 
Wells, Christiansen, Race, Acheson & MacDonald, 2009).  

Next, consider the sentence pair (2a-b), which is 
temporarily ambiguous between a main verb (MV) and a 
reduced relative (RR) clause interpretation. Its resolution is 
influenced by the constraint of thematic fit—the fit between 
the head noun phrase (the crook or the cop) and the verb-
specific roles of the verb (arrested). Given verb-specific 
conceptual knowledge, the reader knows that cop is a 
typical agent of arrested, whereas crook is a typical patient. 
Controlling for animacy, thematic fit functions as an 
immediately integrated constraint computed over the noun 
and adjacent verb—with its effect on RTs occurring in the 
subsequent agent NP region (McRae, Spivey-Knowlton & 
Tanenhaus, 1998). Thus, the second condition (2b) in which 
the initial noun is a typical agent for the adjacent verb will 
elicit greater processing difficulty for the RR interpretation 
than that for the corresponding patient condition (2a). For 
our purposes, this provides an example of sensitivity to a 
local relation relevant for on-line sentence processing. 

Lastly, (3a-b) illustrate subject-verb number agreement. 
In English, it is required that a number-marked subject (key) 
agrees with the number-marking of its verb (was). This is 
the case irrespective of the numerical marking of any 
intervening material (e.g., to the cabinet/s), and individuals 
are sensitive to this fact during reading. When a sentence’s 
head noun is singular, individuals read longer at the MV in a 
condition where the ‘distracting’ local noun (cabinets) 
mismatches in number (i.e., is plural) than in a condition 
where the local noun matches the head noun’s number (i.e., 
is singular); shorter reading latencies are also found for the 
word after the verb in the match condition (Pearlmutter, 
Garnsey & Bock, 1999). Although subject-verb agreement 
may occur locally between adjacent constituents, materials 
in the literature (and here) have involved a nonlocal 
dependency created from interposing a prepositional phrase. 

Method 
Participants The same participants from Exp. 1 participated 
directly afterwards in this experiment for additional credit. 
Because the analyses reported below involve correlations 
with the bigram index from Exp. 1, data was omitted for 
those participants already excluded in Exp. 1 analyses and 
from three others (2 for bilingual status and 1 for declining 
to participate in the second task). 
Materials There were four sentence lists, each consisting of 
9 practice items, 60 experimental items, and 50 filler items. 
The experimental items were sentences drawn from 
previous studies of sentence processing: 20 subject-object 
relative clauses (SOR; Wells et al., 2009), 20 reduced 
relative ambiguities influenced by thematic fit (TF; McRae 
et al., 1998), and 20 subject-verb agreement transitives (S-
V; Pearlmutter et al., 1999). A yes/no comprehension probe 
followed each item. Item conditions within sentence sets 
were counterbalanced across lists.  
Procedure Each participant was randomly assigned to a list, 
whose   items   were   presented   in   random  order  using  a  
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a standard word-by-word, moving window, self-paced 
reading paradigm. Millisecond reading times (RTs) per 
word and accuracy were recorded for analyses. 

Results and Discussion 
Overall comprehension accuracy across participants was 
high, M= 87.4%, SD=7.6. RTs in excess of 2500 ms (0.2% 
of data) were removed, and remaining RTs were then 
length-adjusted for the number of characters in a word using 
a standard procedure (Ferreira & Clifton, 1986). Unless 
otherwise noted then, all RTs reported below for each of the 
sentence sets have been length-adjusted, with the same 
sentence regions examined as those in the original studies. 
RTs connected with relevant effects for each of the sets 
were then used to probe for associations with individuals’ 
bigram scores from Experiment 1, as summarized below. 

Subject-Object Relatives. Results replicated the main 
effect for clause-type at the MV from Wells et al. (2009), 
F(1, 21) = 5.55, p= .03. OR MVs were read reliably longer 
(91 ms) than SR MVs. However, there was no signification 
correlation between bigram scores and MV RTs for either 
SR (r = .04, p= .85) or OR (r = -.16, p= .47) sentences. 
Thus, differences in adjacent SL did not appear to directly 
map onto differences in processing long-distance 
dependencies in these relative clauses. 

Thematic Fit. The influence of TF was replicated at the 2-
word MV region (e.g., was guilty), F(1, 21) = 6.42, p =.02, 
albeit not at the directly preceding agent NP region.2 Agent 
conditions were read 39 ms longer than patient conditions at 
the MV region. The correlation between bigram scores and 
unadjusted RTs at the MV of the ‘congruent’ patient 
condition was not significant (r = .29, p= .19); but for the 
’incongruent’ agent condition, the correlation reached 
marginal significance (r = .40, p= .06), with better adjacent 
statistical learners taking longer to read the disambiguating 
verb phrase. This suggests a tendency for greater bigram 
sensitivity (in adjacent SL) to negatively correspond with 
resolving nonlocal ambiguity when the local TF constraint 
provides an opposing bias to the RR clause interpretation. 

Subject-Verb Agreement. A 34 ms effect of match (i.e., 
the difference between match and mismatch conditions) was 
obtained at the verb, F(1, 21) = 31.28, p< .0001, which 
replicated Pearlmutter et al.’s (1999) findings. There was a 
smaller effect of match (23 ms) at the post-verb region, F(1, 
21) = 4.48, p= .05, which was also numerically present but 
not reliable in Pearlmutter et al. Additionally, the correlation 
between bigram scores and RTs was significant for the 
effect at the verb (r = .51, p= .02), with better bigram 
learning corresponding to a larger effect of match condition. 
To further examine differences in processing patterns 
according to SL status, a median-split was performed on 
bigram scores, establishing 57.8% as the cut-off for defining 
membership in either a “high” bigram (n=11, M= 63.9%, 

                                                             
2 The later-occurring but nonetheless reliable effect of thematic 

fit is likely due to differences in the length of the moving window 
used in this study (1-word) and that by McRae et al. (2-word). 

SD=4.0) or “low” bigram group (n=11, M= 51.4%, SD=5.8). 
Significant bigram-group differences emerged for the effect 
of match condition across regions (as shown in Figure 3). 
While the low-bigram group did not elicit a significant 
effect of match condition at either the verb or post-verb 
region (p= .13 and p= .91, respectively), the high-bigram 
group showed a clear effect in both regions (both p’s< .001). 
As apparent in Fig. 3, the high-bigram group demonstrated 
greater sensitivity to the interference created by the locally 
mismatched marking of the noun in the prepositional phrase 
(which was irrelevant for computing agreement). Thus, the 
better adjacent SL of the high-bigram group was related to 
generally less efficient processing than that by their low-
bigram peers of the long-distance dependency entailed by 
the initial noun and verb. Since bigram groups did not differ 
in comprehension accuracy for any sentence-types in the 
experimental sets (all p’s > .15), nor fillers (p= .83), these 
RT patterns were not the result of a speed-accuracy tradeoff. 

Our findings suggest that adjacent SL skill may not 
directly tap into the processes most relevant for handling 
long-distance dependencies in natural language—even 
though nonadjacent SL abilities appear to do so. Thus, while 
Misyak et al. (2010) reported a positive association between 
differences in nonadjacent SL and processing for the same 
SOR clauses as used here, no correlation was detected for 
adjacent SL. More generally, this is consistent with the lack 
of within-subjects correlation found between adjacent and 
nonadjacent SL in Misyak and Christiansen (2007). 

However, while ‘high’ bigram learners may not differ 
from ‘low’ learners on processing long-distance relations as 
such, their increased sensitivity to local relations might 
interfere with the processing of the longer-distance elements 
within the sentence. This tendency is seen in the TF set, 
where above-average bigram tracking abilities seem to have 
a negative effect for processing the MV—the site where the 
initial, nonlocal ambiguity must be resolved. Similarly, too 
much sensitivity to local information is clearly evidenced 
within the last sentence set, where the irrelevant marking of 
an adjacent noun negatively affects better bigram learners’ 
resolutions of S-V agreement, with protracted RTs also at 
the MV site of integrating the long-distance dependency. 

Figure 3: RT patterns on the S-V agreement sentences by 
bigram group (high/low) and condition (match/mismatch). 
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General Discussion 
This study investigated the processing of adjacent predictive 
dependencies to address questions related to the timecourse 
of adjacent SL and the nature of any empirical association to 
natural language variation. While a learning trajectory 
similar to nonadjacent SL was documented in Exp. 1, 
findings from Exp. 2 indicated that above-average gains in 
adjacent SL performance do not necessarily translate to 
gains in language processing. Notably, those individuals 
who were strongly attuned to tracking statistical bigrams 
exhibited a negative pattern of correlations to tracking 
longer-distance aspects of language when either 
countervailing adjacent constraints or nearby distractive 
elements were present. This inverse pattern was not 
evidenced, though, when processing long-distance relations 
without conflicting local information (in the SOR clauses).  

Instances where better bigram learners were worse 
language processors (or tended towards less efficient RT 
patterns) occurred when the integration of adjacent 
information (between a head-noun and part-participle verb) 
induced greater difficulty for resolving an ambiguity as a 
RR (the TF constraint in Exp. 2)—or when locally irrelevant 
information disrupted agreement computations between a 
nonlocal subject and verb (S-V agreement in Exp. 2). It 
would appear in these situations that those better in adjacent 
SL, although excelling at bigram pattern recognition in the 
SL task, are overly attuned to adjacency patterns and 
become more susceptible to local ‘garden-paths’; in such 
cases, it may be the ‘over-focus,’ rather than any preexisting 
weakness in processing long-distance dependencies (as 
evidenced by parallel performance of groups in the SOR set) 
that hinders efficient resolution of nonlocal relationships. 

This interpretation of our findings suggests that 
intraindividual differences in processing biases for the 
integration of competing constraints among adjacent- and 
nonadjacent dependencies may contribute to variation 
across SL-linked language processing skills. As such, it 
speaks to an open issue regarding whether different systems 
or different processing biases may be entailed by adjacent 
and nonadjacent processing capabilities in humans. It has 
been proposed, for instance, that the two forms of 
processing may be subserved by separate brain areas 
(Friederici et al., 2006), or that the two types of SL are only 
nominally distinct as the outcome of task-specific attention 
processes that may selectively hone in on adjacent or 
nonadjacent statistics (cf. Pacton & Perruchet, 2008). The 
findings here, of negative and specific associations between 
adjacent SL and aspects of language processing, suggest that 
future individual differences research incorporating careful 
attention to a diversity of natural dependency-structures may 
be needed to help establish the proper relation between these 
two manifestations of SL and the extent to which they may 
‘tap’ into the same underlying mechanisms. 
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