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                                                                       Abstract 

It has been suggested that external and/or internal limitations paradoxically may lead to superior 

learning, i.e., the concepts of starting small and less is more (Elman, 1993; Newport, 1990). In this 

paper, we explore the type of incremental ordering during training that might help learning, and what 

mechanism explains this facilitation. We report four artificial grammar learning experiments with 

human participants. In Experiments 1a and 1b we found a beneficial effect of starting small using two 

types of simple recursive grammars: right-branching and center-embedding, with recursive embedded 

clauses in fixed positions and fixed length. This effect was replicated in Experiment 2 (N=100). In 

Experiment 3 and 4, we used a more complex center-embedded grammar with recursive loops in 

variable positions, producing strings of variable length. When participants were presented an 

incremental ordering of training stimuli, as in natural language, they were better able to generalize 

their knowledge of simple units to more complex units when the training input ‘grew’ according to 

structural complexity, compared to when it ‘grew’ according to string length.  Overall, the results 

suggest that starting small confers an advantage for learning complex center-embedded structures 

when the input is organized according to structural complexity.  

Keywords: Artificial Grammar Learning, Center Embedded Structures, Starting Small, Statistical 

learning. 
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Under What Conditions can Recursion be Learned?  

Effects of Starting Small in Artificial Grammar Learning of Center Embedded Structure 

 

Intuitively, one would think that learners should acquire information better when they are 

unhindered by internal or external limitations, such as those relating to constraints on memory or 

input. However, some proposals take the somewhat paradoxical stance that cognitive limitations 

and/or reduced input may confer a computational advantage for learning. These theories, specifically 

the notion that less is more (Newport, 1990) and the importance of starting small (Elman, 1993), are 

often couched in terms of language acquisition. When learning requires discovering relationships 

between component elements, as is the case in language acquisition, processing limitations may be 

advantageous because they act as a filter to reduce memory load as well as the complexity of the 

problem space, making learning more manageable. The starting small effect is considered to be of 

central importance to both the fields of linguistics and developmental psychology, because it suggests 

that starting with a simple initial state and limited memory capacity may make it feasible to learn 

complex input relationships, such as those found in language, without having to postulate innate 

linguistic knowledge. 

Unfortunately, the evidence related to starting small is far from conclusive. Children appear to 

learn some aspects of language better than adults; however, this result may be due to any number of 

factors (e.g., Hakuta, Bialystok, & Wiley, 2003; see Arnon & Christiansen, 2017, for a review). 

Initially, computational work supported the theory of starting small (e.g., Elman, 1993), but 

subsequent simulations appeared to contradict those findings (Rohde & Plaut, 1999, 2003). 

Furthermore, empirical data gathered from human participants have not resolved the issue; some data 

support a benefit for starting small, (Cochran, McDonald, & Parault, 1999; Kareev, Lieberman, & Lev, 

1997; Kersten & Earles, 2001; Lai & Poletiek, 2011; Poletiek, 2011), while other data do not 
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(Fletcher, Maybery, & Bennett, 2000; Ludden & Gupta, 2000; for reviews see Rohde & Plaut, 1999, 

2003). 

This paper seeks to determine under what conditions, if any, starting small might have an effect 

on learning complex recursive language-like structure. Specifically, we investigate the limits of the 

starting small hypothesis using the artificial grammar learning (AGL) paradigm. First, we discuss the 

inconclusive evidence for starting small and two possible explanations of the effect in terms of either 

structural complexity versus memory load. Second, we present five experiments to examine the 

starting small effect using recursive artificial grammars. In Experiment 1a and 1b, we establish the 

basic facilitation effect of an incremental ordering of the input for learning a grammar with multiple 

clauses. Experiment 1a shows that when participants are presented a learning set generated by a simple 

right-branching recursive grammar that is ordered according to the number of recursive loops at the 

end of strings, they achieve better learning than when the learning set is ordered randomly. Experiment 

1b shows that this facilitation also occurs when the recursive loops are inserted within the string, i.e., 

for a recursive center-embedded (CE) grammar.  In Experiment 2, the facilitation is replicated for the 

CE grammar using a large sample (N=100), and shown to occur both for short and long strings of the 

grammar.   

Experiment 3 directly compares the effect of starting small according to structural complexity 

versus item length. The results of Experiment 3 reveal that the starting small effect is largest when the 

training set is ordered according to structural characteristics of the grammar, compared to when the 

ordering is according to sentence length. Finally, Experiment 4 uses a serial presentation of syllables 

to more closely mimic serial presentation of components in speech. The results again revealed a 

beneficial effect of starting small. Crucially, an additional analysis showed that only when the training 

set was staged according to stimulus complexity, could participants use their knowledge of the simple 

structures to help learn the more complex ones. Our findings suggest that the facilitative effect of 

starting small occurs both for simple recursive structures as well as more complex ones, and is greatest 
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when the input ‘grows’ incrementally according to structural complexity. In sum, these findings point 

to a fundamental moderator of learning that has consequences for language acquisition, development, 

and inductive learning more generally.  

Starting Small Evidence 

The less is more and starting small hypotheses can be thought of as two related but separate 

ideas. The ideas are similar in that they propose that limitations may benefit learning, but they differ in 

terms of the nature of the limitation that causes the benefit. The limitations may arise from internal 

cognitive constraints, or from external constraints on the input of the cognitive system. Orthogonal to 

this distinction, external or internal limitations may either exert their beneficial effects on the amount 

or complexity of the information to be processed. As a result, the less is more hypothesis may refer to 

the benefit of internal constraints due to limited memory capacity or computational capacity (though 

both cognitive functions may be related, Baddeley, 2000; MacDonald & Christiansen, 2002; Poletiek, 

2011). Analogously, the starting small hypothesis may refer to the benefit of external constraints due 

to limited amount of information in the input items (e.g., length) or to their limited structural 

complexity. Here, we review data related to all these possibilities, starting with internal constraints.   

In the context of language acquisition, Newport (1990) proposed that maturational constraints in 

the cognitive system are crucial for allowing language to be learned successfully. In support, data were 

reported from deaf adult participants, who learned American Sign Language (ASL) at different ages. 

On ASL morphology and syntax, native signers outscored early learners, who in turn outscored late 

learners. Newport suggested that young children necessarily focus on smaller linguistic segments -- 

where smaller segments refer to simpler, adjacent, structures -- because of their limited working 

memory capacity. In this manner, children become proficient with the constituent parts of signs first, 

and then learn to combine them into larger, more complex structures. Late learners, because they lack 

these cognitive limitations, attempt to learn larger and complex sequences in their entirety. Although 
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the late learners learn quickly compared to the early learners, they are less proficient at combining 

simple constituents into more complex wholes.   

In a subsequent study exploring this hypothesis, Elman (1993) trained a simple recurrent 

network (SRN) to learn aspects of an artificial language. Under standard conditions, the network was 

unable to learn the sequential regularities of the grammar. But when Elman simulated working 

memory limitations by periodically eliminating the network's access to its prior internal states—and 

allowing the size of this temporal window to increase over time—the neural network's performance 

improved.  

Further support for the less is more hypothesis comes from Cochran, McDonald, and Parault 

(1999) who taught adults a modified version of ASL. They simulated cognitive limitations by 

administering a concurrent capacity-limiting task during training and found that the participants in the 

no-load condition displayed more rigid learning and were less adept at using the signs in new contexts.  

Additionally, Kareev, Lieberman, and Lev (1997) explored the relation between working memory 

capacity and the detection of correlation. Human participants were tested on their ability to predict the 

relationship between two binary variables. Participants with lower working memory capacity were 

better at detecting the appropriate correlation and performed better on the task than did high working 

memory capacity participants. Since working memory, on this account, has both a short-term storage 

and a computational cognitive function, this evidence was taken to support the hypothesis that a 

restricted cognitive capacity can confer an advantage in some inductive learning tasks.  Finally, 

DeCaro, Thomas and Beilock (2008) argued that word category structure that is learned implicitly by 

information integration suffers from high working memory capacity. 

However, there may be reasons to be less confident in these findings. For instance, Rohde and 

Plaut (1999, 2003) conducted neural network simulations that contradicted Elman’s (1993) results.  

Using the same architecture, simulation parameters, and training input, Rohde and Plaut failed to 

observe an advantage for reduced cognitive capacity. They also questioned a number of previous 
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conclusions (Cochran et al., 1999; Kareev et al., 1997), arguing instead that these earlier data do not 

support the notion that internal limitations benefit learning. Other studies appear to support this 

perspective. For example, adult participants under capacity-limiting conditions failed to show an effect 

of starting small in an AGL task (Ludden & Gupta, 2000). In a similar vein, younger children do not 

surpass older children in an implicit covariation detection task (e.g., Fletcher et al., 2000). In fact, the 

few studies that have examined the development of implicit pattern learning show either no 

differences or improvements with age (e.g., Arciuli & Simpson, 2011; Jost, Conway, Purdy, Walk, & 

Hendricks, 2015; Thomas, Hunt, Vizueta, Sommer, Durston, Yang, & Worden, 2004).  Finally, Tharp 

and Pickering (2009) disputed whether the category structure tasks used by DeCaro et al., were 

actually recruiting the implicit system; suggesting that the less is more effect reported might be caused 

by specific task demands rather than in an advantage of low working memory.  

The studies reviewed so far focus mainly on the effect of internal limitations on learning. 

However, only a few experiments have investigated the effect of external constraints on learning. The 

lack of research exploring whether limiting or staging input confers a learning advantage may be 

partly because of the widespread belief that the language input children receive does not differ 

substantially from that of adults. However, as Rohde and Plaut (2003) pointed out, there is evidence 

that child-directed speech tends to consist of shorter utterances and less complex sentences than adult-

directed speech (e.g., Pine, 1994; Tomasello, 2003). Therefore, it may be feasible that starting with 

simplified and shorter utterances provides a learning advantage, and that this may help explain 

children’s efficiency in acquiring natural language. Here also, the evidence is mixed, however: Elman 

(1993) and Rhode and Plaut (1999) tested this hypothesis using neural network simulations, and 

obtained mixed results. In an incremental input condition, Elman first exposed the network to simple 

and short sequences. Afterwards, complex sequences were gradually introduced to the network. The 

grammar used by Elman consisted of recursive rules generating center-embedded exemplars. A 

starting small regime was implemented by presenting the network with exemplars containing an 
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increasing number of levels of embedding. When trained in this manner, the network showed a 

learning advantage; however, Rhode and Plaut (1999) did not replicate this starting small effect in a 

similar computer simulation.  

A few studies with human participants seem to support the idea that external constraints provide 

a learning advantage (Reber, Kassin, Lewis & Cantor, 1980; Kersten & Earles, 2001; Lai & Poletiek, 

2011; Lany, Gomez, & Gerken, 2007). Early work (Reber et al., 1980) found better learning of a 

finite-state grammar, after exposure to a training set of items blocked together according the paths in 

the grammar they follow. Kersten and Earles (2001) exposed adults to an artificial language 

comprising both auditory nonsense sentences and visual animated events. Some of the participants 

were exposed to staged input: first single words were presented along with the animated events, then 

sentences composed of two words, then finally three-word sentences. These participants fared better 

on tests of their understanding of the language compared to participants who were exposed to a non-

staged random input presentation. Though Kersten and Earles view this demonstration as supporting 

the notion of internal limitations providing a starting small advantage, Rohde and Plaut (2003) note 

that these data show the possible benefits of using a staged input training scheme. Likewise, in the 

study by Lany, Gomez and Gerken (2007) participants only acquired a complex acXbcY language in 

which the co-occurring aX and bY were separated by a varying c- element when they were first trained 

with a simple version of the language without the c-element, i.e. the aXbY structure. This result is in 

line with an external starting small advantage. Finally, Lai and Poletiek’s (2011) study replicated the 

beneficial effect of a starting small regimen found by Elman (1993) using an artificial center-

embedded grammar that gradually increased in complexity. Though Lai and Poletiek found a strong 

facilitation of starting small, the center-embedded structure they used was quite simple compared to 

Elman’s more naturalistic stimuli. Moreover, superficial phonological cues may have provided 

information about the underlying recursive dependencies in the grammar, independently of the 



STARTING SMALL IN ARTIFICIAL GRAMMAR LEARNING 9         

recursive center-embedded structure itself, likely making it easier to learn than center-embedded 

constructions without such additional cues.   

To sum up, we note three crucial observations. First, some empirical studies suggest that internal 

cognitive constraints can provide an advantage for learning, although simulation studies are 

inconclusive in this regard. Moreover, since memory and computation are closely intertwined 

cognitive functions, it is still unclear which of the two aspects – length vs. computational load -- is 

responsible for the learning advantage. Second, a few studies show that external constraints – i.e., 

gradually increasing the complexity or quantity of information in the input - may enhance learning as 

well. However, in these studies (Reber et al., 1980; Kersten & Earles, 2001; Lai & Poletiek, 2011), it 

is also unclear which external constraints (staging the input based on complexity or length) crucially 

affects the learnability of the underlying structure, because manipulations of stimulus complexity often 

co-vary with stimulus length. Third, it is possible that the type of structures used to test the starting 

small effect may affect the outcome. Recursive center-embedded structures are complex due to their 

long-distance dependencies. Alternately, other types of recursive grammars are more linear in nature, 

adding recursive clauses at the end of strings, as in right branching recursion. Even simpler grammars 

are finite-state grammars, as used in early AGL studies (Reber et al., 1980). One of the major 

successful tests of the starting small effect used a complex recursive structure (Elman, 1993), whereas 

one of the “unsuccessful” tests used a simple standard finite-state grammar (e.g., Ludden & Gupta, 

2000, Experiment II). Thus, it is possible that the advantage of starting small depends partly on the 

underlying structure to be learned.   

Here, we explore how starting small may specifically facilitate the learning of artificial 

grammars that contain recursive constructions. We suggest that the learning of a particular recursive 

structure involves two parts: a) learning the structural regularities defining the construction in its basic 

(non-recursive) form, and b) learning to generalize these regularities to complex recursive structures 

incorporating multiple instances of this construction. Note that in our view, what it means to “learn 
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recursive structure” is to learn simple “chunks” (i.e., bigrams and trigrams) first, and then learn to 

recognize that the chunks can be combined into more complex structures that may involve non-

adjacent dependencies (see also Christiansen & MacDonald, 2009; Poletiek, 2011).  Given that, in this 

view, mastery of the basic regularities is necessary for successful processing of sequences with 

recursive embeddings, the time course of the learning process may be crucial. Hence, presenting the 

input in a starting small fashion with additional recursive generalizations at each subsequent stage, 

may optimally support learning. This possibility is particularly interesting in the light of the recent 

ongoing debate about the cognitive mechanisms supporting the acquisition of recursion in natural 

language, and the role of the stimulus input in this learning process (e.g., Chomsky, 1995; Christiansen 

& Chater, 1999, 2015; Christiansen & MacDonald, 2009; Corballis, 2007; de Vries, Christiansen, & 

Petersson, 2011; Fitch & Hauser, 2004; Gibson & Thomas, 1999; Perfors, Tenenbaum, & Regier, 

2011; Oettl, Jaeger & Kaup, 2015). Before presenting the four experiments that explore this 

hypothesis, we briefly describe the types of recursive grammars used in the present methodology.  

Recursive Artificial Grammars 

A recursive grammatical construction is one that is defined by self-reference. Different types of 

recursion can be found across a variety of natural linguistic structures. As the number of self-

references (alternatively called recursive loops or order of complexity) increase within a recursive 

construction, the number of embeddings increase.  Consider the grammatical English noun-phrases in 

(1): 

1.  a) The dog [on the sidewalk]. 

b) The dog [on the sidewalk] [near the tree]. 

c) The dog [on the sidewalk] [near the tree] [by the house]. 

The above sentences display right-branching recursion, in which new prepositional phrases are 

recursively added onto the right end, creating sentences of potentially infinite length. Sentence (1a) 

comprises 0 level of embedding (LoE), (1b) 1-LoE, and (1c) 2-LoE.   
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Increasing the number of right-branching embeddings results in slightly decreased 

comprehensibility of English sentences (Christiansen & MacDonald, 2009). Decreases in 

comprehension are even larger for a second type of recursive structure: center-embedding (e.g., Bach, 

Brown, & Marslen-Wilson, 1986). Center-embedded recursion generates structure by embedding new 

material in the center, and pushing apart elements that depend on each other, resulting in long-distance 

dependencies. For example, consider the sentences in (2): 

2. a) [The boy likes the dog]. 

b) [The boy [the girl loves] likes the dog]. 

c) [The boy [the girl [the woman admires] loves] likes the dog].  

As before, sentence (2a) comprises 0-LoE, (2b) 1-LoE, and (2c) 2-LoE. 

The same semantic relationships can be expressed using either right-branching or center-

embedding recursion. For example, consider the two sentences (without recursive embeddings) having 

the same basic structure (3a and 3b), below. These two sentences can be combined either using right-

branching embedding as in (3c) or center-embedding as in (3d):  

3. a) [The boy likes the dog]. 

b) [The girl loves the boy]. 

c) [The girl loves the boy] [who likes the dog]. 

  d) [The boy [whom the girl loves] likes the dog]. 

Both sentences express similar semantic content and involve equal lengthening of the sequence, 

though the center-embedding construction is presumably more difficult than the right branching 

version because it involves long distance dependencies. Thus, whereas both sentences (3c) and (3d) 

are of the same length, they appear to differ in terms of complexity. Thus, by comparing performance 

on right-branching and center-embedded stimuli, it may be possible to experimentally disentangle the 

factors of length versus computational complexity in starting small.  
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Translating this comparison into a controlled experimental situation, we first constructed a right 

branching (Experiment 1a) and a matched center-embedding grammar (Experiment 1b), to test the 

effect of a starting small exposure (i.e., gradually increasing the number of embeddings in the input) 

on learning these two types of grammars. The effect of starting small on learning center-embedded is 

replicated in Experiment 2 in a larger and more diverse sample of participants. In Experiments 3 and 4, 

we more directly explored the separate contributions of constraints on length versus constraints on 

computational load in terms of leading to a learning advantage. To generate sequences of elements 

used in Experiments 1a, 1b, and 2, we created two categories of elements. Elements were represented 

as letters: Category A and Category B. Category A letters could be paired to Category B letters. The 

first letter from the pair belonged to Category A and the second letter of the pair belonged to Category 

B. Furthermore, we included two subsets within each category: Subset 1 and Subset 2. Translating this 

grouping in natural language syntactical categories, Category A elements might be thought of as 

nouns, and Category B letters as verbs. Moreover, Subset 1 and Subset 2 elements might represent 

singular and plural items, respectively. Accordingly, letters from Category A - Subset 1 could be 

paired only with letters from Category B – Subset 1.  Similarly, letters from Category A – Subset 2 

could be paired only with letters from Category B – Subset 2. Twelve consonants, C, Q, M, P, X, S, 

W, Z, K, H, T, and V represented the subsets within each category. A recursive rule was used to 

generate self-embedded exemplars. The embeddings were either right branching (added at the end of 

the exemplar) or center-embedded (inserted in the exemplar), depending on the type of grammar, as 

indicated in Figures 1a and 1b, respectively.   

In Figure 1a, one of the two paths starting from S3 represents the recursive loop generating a 

right branching clause. The other path from S3 terminates the string. In Figure 1b, one of the two paths 

from S1 and S2 represents the recursive loop generating a center-embedded clause. For an example of 

how these grammars generate recursive input strings, C[PH]W was produced from the grammar of 

Figure 1b, having one level of center embedding. CW[PH][QZ] was produced from the grammar of 
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Figure 1a, having two levels of right branching embedding.

 

Figure 1a: Right Branching Grammar G-RB used in Experiment 1a. Examples of strings generated by 

G-RB are CZ, MZ[PH], and MK[PT][XT].  
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Figure 1b: Center embedding Grammar G-CE used in Experiments 1b and 2. Examples of strings 

generated by G-CE are CZ, M[PH]Z, and M[P[XT]T]K.  

 

The purpose of Experiment 1a and 1b was to establish the basic facilitation effect of an 

incremental training regimen for learning recursive complex grammars with multiple clauses. 

Considering that recursive sentences are made by combining multiple building blocks with the same 

structure, we predict a learning regime that allows for encoding the short building blocks separately 

first, followed by longer sequences embodying more of these blocks, should help to make sense of the 

grammar. The basic facilitation was expected to show up in a controlled study with a relatively small 

sample. Notice that though grammar complexity can be defined in various ways (in terms of entropy, 

for example, see Van den Bos & Poletiek, 2008), grammar complexity and string complexity are 
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defined here in terms of the levels of recursion it (can) contain(s). A string generated by a complex 

grammar is more complex as it embodies more levels of embedded loops; a simple string having no 

levels of embedding. To first explore the hypothesis that starting small helps with learning right-

branching recursion, we conducted Experiment 1a, testing whether a simple recursive grammar will 

produce the starting small effect when exemplars are ordered according to increasing numbers of 

levels of embedding and string length. The relatively small sample size of participants in the two first 

experiments was chosen on the consideration that, if starting small helps to a reasonable extent, the 

effect should show up in these relatively easy versions of the RB and CE structure learning tasks.  

 

Experiment 1a 

In the first experiment, we generated letter strings from an artificial grammar having right-

branching recursion (Figure 1a). We ordered the exemplars differently for two separate training 

conditions. In the starting small condition, exemplars were ordered according to increasing levels of 

embedding (LoE). This corresponded to first presenting strings with 0-LoE, then strings with 1-LoE, 

and finally strings with 2-LoE. In this way, the input “started small" with basic sequences only and 

progressively became more complex with applications of the right branching rule. In the second 

training condition, participants received the same input but presented in random order. We predicted 

that by ordering the strings in this way, the starting small input group would learn the basic structure 

of the input first and then be able to generalize it to more complex recursive structures, providing an 

advantage over the random group, which is exposed to both the basic and the recursive constructions 

in an intermixed fashion.  

Notice that the present experiments do not focus on whether the learning process is implicit or 

explicit (Dienes & Seth, 2010). However, since some previous studies on the implicit or explicit nature 

of the learning process in the AGL paradigm suggest that complex grammars might benefit from an 

implicit learning strategy (Reber, 1976; Reber, Kassin, Lewis, & Cantor, 1980; Reber, 1993; Berry & 
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Dienes, 1993; Van den Bos & Poletiek, 2008) and since the grammars we used have recursive 

complexity, we gave participants ‘implicit’ instructions in all experiments and all conditions: the 

learning task was presented as a memory experiment, and no rules were mentioned until the test phase 

(as is typical in many AGL experiments).  

Method 

Participants. For Experiment 1a, 14 undergraduate participants (seven in each condition) were 

recruited from Psychology classes at Cornell University, earning course credits. Please note that 

Experiments 1a and 1b were meant to provide an initial proof of concept of the beneficial effect of 

starting small training regimes on learning recursive structure. Although we did not perform a formal 

power analysis, we expected these effects to be large and therefore only tested relatively small samples 

(see Conway, Ellefson, & Christiansen, 2003). 

Materials. The stimuli were letter sequences generated from the artificial grammar displayed in 

Figure 1a (see Appendix A). The sequences were based on the repetition of pairs, within a recursive 

structure, in which arbitrary letters were assigned to Subset 1 and Subset 2, and to Category A and 

Category B (see Figure 1a). An example of a 0-LoE sequence is CW, a 1-LoE sequence is CWPT, and 

a 2-LoE sequence is CWPTQZ.   

Unique sequences were created for the training and test sessions. Fifty sequences comprised the 

training session. Of these 50 training sequences, 10 were 0-LoE embedding, 20 were 1-LoE 

embedding, and 20 were 2LoE. An additional fifty sequences comprised the test session (see 

Appendix A). Of these test sequences, 25 were generated from the same grammar as the training 

sequences (grammatical) and 25 did not follow the grammar (ungrammatical).  Ungrammatical 

sequences were created by changing one letter of a grammatical test sequence.  The substituted letter 

was one that was of the proper noun-verb category but with an incorrect plurality (subset). Hence, 

since the error involved the relative position of the ‘verb’ with regard to its corresponding noun (the 

nouns could never be wrongly positioned), a learner won’t be able to notice an ungrammaticality 
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unless they know the grammatical pattern of correspondences between the nouns and verbs. For 

example, the test item CVMZ had two clauses: CV and MZ. Since (the noun) C could not be followed 

by (the verb) V, the item was ungrammatical. The positions in which the substituted letters occurred in 

the sequences were distributed evenly across all items. The test session comprised 16 sequences of 0-

LoE, 16 of 1-LoE, and 18 of 2-LoE, with each level of embedding having half grammatical and half 

ungrammatical structures. 

Procedure.  The experiments were run using the E-Prime presentation software with stimuli 

presented on a computer monitor. Participants were randomly assigned to one of two conditions: 

Starting Small or Random. All participants were instructed that they were participating in a memory 

experiment. They were told that in the first part of the experiment they would see sequences of letters 

displayed on the screen and that they would be tested later on what they observed. Each sequence in its 

entirety was presented individually, for a duration of four seconds each. Each of the 50 training items 

was presented three times, for a total of 150 input exposures, lasting roughly 12-14 minutes in 

duration.  The starting small participants received staged input: three blocks of the 0-LoE sequences 

were presented first; next three blocks of the 1-LoE sequences, and finally three blocks of the 2-LoE 

sequences. No breaks were provided between blocks. Sequences were randomized within blocks. The 

random group received all the sequences across all LoE intermixed with one another, in random order. 

Thus, both the starting small and the random groups received the same training input but in different 

orders of presentation. 

After the training phase, participants were told that the items they had just seen had been 

generated by a complex set of rules that determined the order of the letters. They were instructed that 

they would now see new letter strings, some of which followed the rules of the grammar, and some of 

which did not. Their task was to classify whether each letter string followed the same rules as the 

training sequences or not, by pressing a button marked “YES" or “NO". Each test sequence was 

presented on the screen until a judgment was made, with no time limit given. Both the starting small 
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and random groups received the same test instructions and the same set of 50 test sequences were 

presented in random order for each participant. 

 

 

Results and Discussion 

The mean proportion of correct classification of the 50 test items was .70 for the starting small 

group (M = 35.00, SD = 3.79) and .54 for the random group (M = 27.43, SD = 4.79). We conducted 

one-sample t-tests and found that only the starting small group performed significantly above chance 

levels (t(6) = 6.99, p < .001). The starting small group also performed significantly better than the 

random group (t(12) = 3.86, p < .01; see Figure 2).    

The results of Experiment 1a show that only when the input was presented in a staged fashion, 

with 0-LoE strings presented first, did participants show above-chance learning of the artificial 

grammar. Participants showed no learning when the training items were presented in random order. 

Crucially, the starting small group out-performed the random group, lending empirical support to the 

starting small hypothesis. 
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Figure 2: Performance for Starting Small and Random-ordering training conditions using a right-

branching (Experiment 1a) and a center-embedded recursive grammar (Experiment 1b). Error-bars 

indicate SE of the mean. 

 

Experiment 1b 

In Experiment 1a, we observed an effect of starting small for a right-branching recursive 

structure. This involves the addition of new basic 0-LoE construction at the end of a grammatical 

sequence. In the resulting grammatical sequence, the grammatical dependencies are all between 

adjacent elements in a string. We next explore to what extent the starting small effect is also present in 

center-embedding recursion, which is characterized by non-adjacent dependencies (Figure 1b); here, 

the basic 0-LoE structure has to be recognized even if the two connected elements it is made of (an A 

category and a B category letter) are pulled apart to distant positions.   

We predicted that by ordering the strings, the starting small input group would be able to 

generalize the basic agreement structure from the 0-LoE items to the more complex center-embedded 

constructions. In contrast, the random group was expected to have problems learning this grammar as 

they were presented with both basic and recursive items intermixed with one another. However, as the 

center-embedded operation is more complex, lower performance is expected than for the right 

branching structure, when participants are provided with the same number of learning items as in 

Experiment 1a.   

Method 

Participants. For Experiment 1b, 16 undergraduate participants (eight in each condition) were 

recruited from Psychology classes at Cornell University, earning extra credit. 

Materials. The sequences used in Experiment 1b were identical to those in Experiment 1a 

except that they were converted from a right-branching to a center-embedded structure (see Appendix 
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B). That is, embedding was increased by inserting additional noun-verb pairs into the middle of the 

center-embedded sequences to achieve higher levels of embedding. An example of a 0-LoE center-

embedded sequence is CW, a 1-LoE sequence is CPTW, and a 2-LoE sequence is CPQZTW.  Test 

items were made in the same manner as for Experiment 1a. For example, the test item CMZV had two 

clauses: CV and MZ. Since (the noun) C could not be followed by (the verb) V, the item was 

ungrammatical. 

Procedure.  The procedure was identical to Experiment 1a. 

Results and Discussion 

The mean proportion of correct classification on the 50 test items was .63 for the starting small 

group (M = 31.5, SD = 4.71) and .52 for the random group (M = 26.4, SD = 1.06). Only the starting 

small group performed significantly above chance levels (t(7) = 4.08, p < .005).  The starting small 

group also performed significantly better than the random group (t(14) = 2.88, p < .05; (see Figure 2). 

In order to test for a possible interaction between type of grammar (RB vs. CE) and training regime 

(Starting-small vs. random), we performed a 2×2 between-subjects ANOVA on the aggregated data of 

Experiments 1a and 1b. Starting small showed a beneficial effect on learning compared to a random 

ordering (F (1, 26) = 20.2, p < .001), comparing RB to CE learning (Experiment 1a with Experiment 

1b), we observed no main-effect of grammar (F = 2.6, p = .12), nor any interaction between grammar 

and training-regime (F < 1, p = .63).   

Though our findings clearly suggest a reliable effect of Starting Small, our sample of 

participants was small and homogeneous, containing educated young people only. If the starting small 

effect plays a role in natural language learning, we can expect it to underlie the acquisition of 

sequential regularities in the general population of learners, disregarding variation in their cognitive 

capacity. To explore further the relevance of the Starting Small effect and to corroborate our finding, 

we subsequently conducted a replication study of Experiment 1b, in a larger, more diverse sample 

(N=100). 
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Experiment 2 

We replicated Experiment 1b using a larger number of participants sampled from a more 

heterogeneous population recruited using Amazon Mechanical Turk. 

Method 

Participants. The participants were recruited using Amazon Mechanical Turk 

(https://www.mturk.com). Internet-based experimentation was chosen due to the simple nature of the 

experiment and the large number of participants that we desired. Previous studies had shown that 

Internet-based behavioral experiments generate reliable data comparable to those based on more 

traditional data acquisition in the lab (e.g., Zwaan & Pecher, 2012). One-hundred participants 

participated, 50 in the Starting Small training regime and 50 in the random training regime. Fifty-three 

percent of participants were male, mean age was 36.5 years (SD = 11.4), 15% had a high school 

diploma as their highest achieved education, 23% had attended college without degree, 10% had an 

Associate’s degree, 43% had a Bachelor’s degree, and 9% had a graduate degree (Master’s, Doctorate 

etc.). All participants completed an informed consent form prior to the start of the experiment, were 

from the United States, and were paid $3.00 for approximately 20 min of their time (see Buhrmester, 

Kwang, & Gosling, 2011). 

Materials. The learning and test sequences used in Experiment 2 were identical to those in 

Experiment 1b (see Appendix B).  

Procedure.  The procedure was identical to Experiment 1b, and was programmed using the 

QRTEngine (Barnhoorn, Haasnoot, Bocanegra & van Steenbergen, 2015). 

Results and Discussion 

The mean proportion of correct classification on the 50 test items was .56 for the starting small 

group (M = 28.0 SD = 5.59) and .51 for the random group (M = 25.5, SD = 3.52). Only the starting 

small group performed significantly above chance levels (t(49) = 3.82, p < .001). We performed a 3×2 

https://www.mturk.com/
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mixed ANOVA on mean proportions of accurate responses with Levels of Embedding (1-LoE, 2-LoE 

and 3-LoE) as a within-subjects factor, and Training Regime (Starting Small and Random) as a 

between-subjects factor. We observed significant main-effects for Levels of Embedding (F(2,196) = 

30.18, p < .001), and Training Regime (F(1,98) = 6.88, p = .01), but no interaction between the two 

factors (F(2,196) = 0.47, p = .63; see Figure 3). Planned linear contrasts indicated that performance 

increased with decreasing numbers of levels of embeddings (p < .001). Pairwise comparisons on the 

factor Levels of Embeddings showed that 0-LoE items (M = .61, SD = .17) had a higher accuracy than 

1-LoE items (M = .51, SD = .11; p < .01), and 2-LoE items (M = .48, SD = .13; p < .01), and that 1-

LoE items had marginally significant higher accuracy than 2-LoE items (p = .052).    

Despite the lack of a significant interaction between Levels of Embedding and Training Regime 

we performed simple-effects analyses of LoE for Starting Small and Random conditions separately. 

The Starting Small condition showed a significant LoE effect (F(2,98) = 16.72, p < .01), where 0-LoE 

(M = .65, SD = .18) had a higher accuracy than both 1-LoE (M = .53, SD = .13; p < .01), and 2-LoE 

(M = .50, SD = .14; p < .01). The Random condition also showed a significant LoE effect (F(2,98) = 

13.48, p < .01), where 0-LoE (M = .58, SD = .14) had a higher accuracy that both 1-LoE (M = .49, SD 

= .08; p < .01), and 2-LoE (M = .47, SD = .12; p < .01).  

As in Experiment 1b, the results show that only when the input was presented in a staged fashion 

were participants showing above-chance learning of the artificial grammar. Furthermore, the Starting 

Small condition outperformed the Random condition, and this effect was independent of the number of 

levels of embeddings in the test items. Experiment 2 replicates the starting small effect for center-

embedded recursive structures, in a larger and more general sample with a more diverse educational 

background than in Experiments 1a and 1b, which suggests that the facilitation occurs for learners 

with a broad range of cognitive skills.  

Both Experiments 1a, 1b and 2 used recursive grammars with the same basic structure, pairing 

two elements of two categories A and B, having different recursive operations. Given that all pairings 
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had equal lengths (i.e. an A with a B letter), strings with an equal number of embeddings necessarily 

have equal lengths in both RB and CE grammars: 0-LoE strings have two letters, 1-LoE strings have 

four letters and 2-LoE strings have six letters. As a result, a starting small ordering based on the 

number of LoE’s correlates perfectly with ordering according to increasing length.  Therefore, the 

results of Experiments 1a, 1b and 2 are inconclusive with respect to the relative contribution of length 

(by staging input according to string length) and structural complexity (by staging input according to 

LoE). Though string length has been suggested to affect learning independently from complexity in a 

non-recursive AGL study (Poletiek & van Schijndel, 2009) previous studies on the less is more and 

starting small effects have not distinguished between these two contributions.   

Thus, it is conceivable that staging the training input according to increasing string length 

facilitates learning. The alternative view is that reduced complexity during initial learning – i.e., 

gradually increasing the number of embeddings over time - is the more important factor causing the 

starting small facilitation. As we argued above, learners must first identify the basic structural pattern 

before they can generalize it to recursive constructions that re-use the basic pattern. A starting mall 

regime allows for early elaborate encoding of the basic patterns and chunks of the system, before they 

are encountered in more complex structures. Hence, we hypothesize that starting small helps because 

it gradually introduces increasingly complex structures following initial exposure to basic patterns, not 

because it incrementally stages the number of elements in the input per se.   

Basic patterns underlying recursive constructions in natural language are not limited to two-

element pairings, as in Experiments 1a, 1b and 2, but vary in length. This makes parsing even more 

difficult because the building blocks a sentence is made of cannot be identified on the basis of their 

length. In Experiment 3, we use a recursive grammar that produces strings of variable length within a 

given LoE. Furthermore, we compare a starting small training regime according to string length and a 

starting small training regime according to string complexity, to determine the relative impact of 

length and computational constraints when starting small.  In summary, our results so far suggest a 
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beneficial effect of starting small for recursive grammars but leaves unanswered whether the effect 

was due to a gradual increase in string length or in structural complexity during training. Note that the 

answer to this question has implications for the issue of the learnability of complex center-embedded 

structures by exposure to exemplars: If the ordering constraint (incremental ordering over time) in the 

input can be exploited effectively to learn the structure of language, this might strengthen the 

possibility that human languages may be learnable from environmental information in the input (see 

also Christiansen & Chater, 1999, 2015; Christiansen & MacDonald, 2009; Poletiek & Chater, 2006).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Performance for Starting Small and Random-ordering training conditions using a center-

embedded recursive grammar as a function of number of levels of embedding in the test-items 

(Experiment 2). Error-bars indicate SE of the mean. 
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Experiment 3 

Similar to Experiments 1b and 2, a recursive center-embedded artificial grammar was used with 

two categories A and B, in this case consisting of eight letters. However, the basic elements in each 

category (A and B) were either individual letters or bigrams. Category A elements were C, QP, S, and 

Category B elements were WZ, K, V. Category A elements could be paired with category B elements 

from the same subset, as displayed in Figure 4.   

 

Figure 4: Center-embedded grammar G3, used in Experiment 3, with exemplars varying in length for 

an equal number of LoE. E.g., QP[CWZ]WZ (length 7) and S[CK] V (length 4)  are exemplars of this 

grammar having both 1 LoE. 
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This resulted in a grammar G with the same structural characteristics as Grammar G-CE, but 

having fewer legal AB pairings. In contrast to the stimuli in Experiment 1a, 1b and 2, the basic 0-LoE 

items could be two, three or four letters long. The variation in length was realized by replacing two 

letters by specific bigrams (QP and WZ). This change was intended to change as little as possible the 

complexity of the elements per se, while still varying sentence length for equally complex (i.e. equal 

number of embeddings) sentences. The length of 1-LoE items could vary in length between four and 

eight letters. Hence, the length of a string was not fully dependent on its recursive complexity. For 

example, strings with four letters could have either no (QPWZ) or one embedding (C[SV]K). Notice 

that LoE and length were not fully independent either, because inserting an embedding necessarily 

increases the length of a string. As can be seen in Figure 4, five unique legal AB pairs (0-loE 

sequences) could be generated by G (as compared to G-CE having 18 unique legal AB pairs). In this 

manner, we reduced the variability of G to compensate for its increased complexity as compared to the 

grammars in Experiments 1a, 1b and 2, caused by the variability of string length within a level of 

embedding, in order to make learning possible within the context of the experimental task.   

Method 

Participants.  To allow a reliable comparison between the two starting small regimes and one 

random regime, while still controlling the task performing conditions in the lab, we enhanced 

statistical power by increasing sample size. Fifty-four students (18 in each of the three groups) from 

Leiden University participated, either for course credits or financial compensation (€ 4.50).   

Materials.  Fifty grammatical sequences were generated from the grammar G, for the training 

set (Appendix C). Each exemplar was presented three times. The 50 strings were ordered (within each 

experimental block) based on ‘groups’ of strings differing in LoE or length. In the structure based 

Starting Small (SS-S) condition, the exemplars were presented successively in three consecutive 

groups of five 0-LoE sequences, followed by fifteen 1-LoE sequences, and finally thirty 2-LoE 

exemplars. Within a group, the ordering of the strings was randomized and each unique sequence was 
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presented three times (Appendix C). Following the same procedure, the same fifty sequences were 

ordered according to their length in the Starting Small according to length (SS-L) condition. In the SS-

L condition, grouping was determined by string length. Ten groups were presented successively: two 

unique strings with length 2, followed by two unique strings of length 3, two strings of length 4, four 

strings of length 5, eleven strings of length 6, seven strings of length 7, eleven strings of length 8, eight 

strings of length 9, two strings of length 10 and one string of length 12 (see Appendix C).   

Within a group, the sequences were presented randomly. As in the SS-S condition, the unique 

sequences were presented three times each in a random order, with the constraint that one unique 

sequence could not be repeated. For groups with two strings, the strings were alternated three times. 

The string in the last group (one string of length 12) could of course not satisfy the non-repetition 

requirement. It was repeated three times. In the Random condition, the 50 strings were presented in 

random ordering in one single group, each three times.  No consecutive repetitions could occur in the 

random presentation.   

The test-set consisted of 25 grammatical and 25 ungrammatical strings. As in Experiment 1a, 1b 

and 2, ungrammatical sequences were created by changing one element of a grammatical test 

sequence. The substituted element was one that was of the proper category (a B was replaced with a B 

element) but from an incorrect subset, hence making an incorrect pair with the corresponding A 

element. The positions in which the substituted elements occurred in the sequences were distributed 

evenly across all items (Appendix C). Since the present grammar G3 generated only five unique 0-

LoE sequences, these could occur in both the training and test set.  The 1-LoE and 2-LoE test items 

did not occur in the training set.   

Procedure. E-Prime presentation software was used to present the stimuli on a computer 

monitor. Participants were randomly assigned to one of three conditions: Starting Small-Structure 

based (SS-S), Starting Small-length based (SS-L) or Random. All participants were instructed that 

they were participating in a memory experiment. Training sequences were presented individually, for a 
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duration of four seconds each. In each condition, the same 50 training items were presented three 

times, in successive groups, for a total of 150 input exposures. Depending on condition, grouping was 

determined on the basis of structure (number of levels of embedding) in the SS-S group, and on the 

basis of string length in the SS-L group. In the random condition, the input was fully randomized 

(Appendix C).  

After training, participants were told that they would see new letter sequences. Notice however 

that four LoE training strings were repeated in the test phase. This was not expected to affect their 

performance, because they judged whether the new sequences followed the same rules as the training 

sequences or not. Participants were required to respond as quickly and accurately as possible. Each test 

sequence was presented on the screen until a judgment was made. 

 

Results and Discussion 

The mean proportion of correct classification was .63 for the Starting Small-Structure group (M 

= 31.5, SD = 8.5), .52 for the Starting Small-Length group (M= 26.2; SD = 3.4) and .45 for the 

Random group (M = 22.4, SD = 3.8). We performed a 3×3 mixed ANOVA on mean proportions of 

accurate responses with Levels of Embedding (1-LoE, 2-LoE and 3-LoE) as a within-subjects factor, 

and Training Regime (Starting Small-Structure, Starting Small-Length and Random) as a between-

subjects factor. Due to a violation of sphericity (Mauchly’s W = .49, p < .001) we examined 

multivariate within-subjects tests. We observed significant main-effects for Levels of Embedding 

(Wilks’ λ = .86, F(2,50) = 4.08, p = .02), and Training Regime (F(2,51) = 12.25, p < .001), but no 

interaction between the two factors (Wilks’ λ = .85, F(4,100) = 2.17, p = .08). Planned linear contrasts 

indicated that performance increased with decreasing numbers of levels of embeddings (p = .014), and 

increased as a function of training regime (p < .001). Helmert contrasts indicated that the average 

performance in the starting small conditions was higher than in the random condition (p < .01), and 

that the Starting Small-Structure condition resulted in a higher performance than the Starting Small-
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Length condition (p < .01). Pairwise comparisons on the factor Levels of Embeddings showed that 0-

LoE items (M = .57, SD =.23) had a higher accuracy than 2-LoE items (M = .50, SD =.13; p = .01), 

and comparisons on the factor Training Regime showed that Starting Small-Structure (M = .63, SD 

=.17) outperformed Starting Small-Length (M = .52, SD =.07; p = .006) and Random (M = .45, SD 

=.08; p < .001), and Starting Small-Length outperformed Random (p = .046). All other pairwise 

comparisons were not significant.    

Despite the lack of a significant interaction between Levels of Embedding and Training Regime, 

we performed simple-effects analyses of LoE for SS-S, SS-L and Random conditions separately. The 

SS-S condition showed a significant LoE effect (F(2,34) = 6.45, p < .01), where 0-LoE (M = .71, SD = 

.20) had a higher accuracy than both 1-LoE (M = .61, SD = .18; p = .02), and 2-LoE (M = .58, SD = 

.19; p = .01). The SS-L condition also showed a significant LoE effect (F(2,34) = 5.47, p = .02), where 

0-LoE (M = .60, SD = .17) had a higher accuracy that both 1-LoE (M = .486, SD = .09; p = .02), and 2-

LoE (M = .490, SD = .05; p = .02). The random condition did not show a LoE effect: 0-LoE (M = .42, 

SD = .21) did not have a higher accuracy than both 1-LoE (M = .48, SD = .10; p = .33), and 2-LoE (M 

= .45, SD = .06; p = .57). 

In addition, we also performed simple-effects analyses of the factor Training Regime for the 0-

LoE, 1-LoE and 2-LoE conditions separately. The effect of Training Regime was significant for 0-LoE 

items (F(2, 51) = 10.18, p < .001), 1-LoE items (F(2, 51) = 5.77, p < .01), and 2-LoE items (F(2, 51) = 

5.43, p < .01). Pairwise comparisons for 0-LoE items showed that Starting Small-Structure 

outperformed Random (p < .001), and Starting Small-Length outperformed Random (p = .008), for the 

1-LoE items that Starting Small-Structure outperformed Starting Small-Length (p = .01) and 

outperformed Random (p = .01), for 2-LoE items that Starting Small-Structure nearly outperformed 

Starting Small-Length (p = .07) and outperformed Random (p = .01), and Starting Small-Length 

outperformed Random (p = .03). All other pairwise comparisons were not significant. 
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In summary, the results of Experiment 3 showed a facilitation of starting small for learning the 

center-embedded grammar, especially when the training items were staged according to increasing 

LoE, and less so when the items were staged according to increasing string length. Overall, 0-LoE test 

items were judged more accurately than 2-LoE test items.  

A possible limitation for generalizing to natural grammar learning is the presentation of full 

‘sentences’ during the learning and testing phases. Under the current experimental setup, all elements 

of the sentence were presented simultaneously and stayed available during processing, potentially 

facilitating the pattern recognition of elements that are distant from each other. Natural language 

processing, however, unfolds sequentially over time, and words must be bound together in real time 

(e.g., Christiansen & Chater, 2016). Words heard at the onset of the sentence have to be either 

continuously maintained or retrieved from memory, and selected for integration with upcoming words. 

In complex sentences with multiple embeddings, processing difficulties might rapidly increase when 

the words are presented sequentially rather than simultaneously.  

In Experiment 4, we test whether starting small helps when the learning input and the to-be-

judged test sentences are processed sequentially word by word, like in natural language. As in 

Experiment 3, we hypothesize that starting small with basic patterns first might facilitate 

generalization to more complex sequences that contain these basic patterns. In the simultaneously 

presented materials, visual pattern recognition might be involved in this learning. Alternatively, during 

sequential presentation of the strings, processing might involve learning to predict over time, as in 

natural language. Hence, the first element of a basic structure might activate prediction of the second 

one. Alternatively, the second element of a basic structure might act as a cue to retrieve the first one. 

We therefore performed an additional analysis testing whether performance on 0-LoE items predicts 

performance on the more complex (1-LoE and 2-LoE) items for two starting small conditions and one 

random presentation condition.   
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Experiment 4  

As in Experiments 1b, 2 and 3, a recursive center-embedded artificial grammar was used with 

two element categories A and B. Since the sequential presentation was expected to make the task 

overall more difficult than in Experiment 3, adaptations were made to the grammar and the procedure, 

but which did not affect the crucial manipulations. First, consonant-vowel (CV) syllables rather than 

letters were used to make the basic elements (‘words’) of the language. The purpose of this was to 

facilitate reading, i.e. pronouncing silently, and encoding the stream of elements fluently. To vary 

string length independently of the number of levels of embedding (as in Experiment 3), category A 

elements could vary in length (being one, two or three syllables long) (see Figure 5).  In all conditions 

the same training and test items were used.  

 

Figure 5: Center embedding grammar G4 with two categories of elements (A-elements and B-

elements), used in Experiment 4. A elements were one, two or three syllables long, B elements were 
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one syllable. Exemplars vary in length for an equal number of LoE., e.g., gegagi[gegagiku]ko (length 

8) and ba[[dedi]tu]po (length 5) are exemplars of this grammar having both 1-LoE. 

 

The two sets of syllables were categorized by their vowels and their consonants. Category A contained 

–a/-e/-i, whereas Category B contained -o/-u. These phonetic cues constrained word category, and thus 

helped learning the categories, without affecting the positional embedding rule. As can be seen in 

Figure 5, six unique legal AB pairs (0-LoE sequences) could be generated by the grammar.  

 

Method 

Participants.  Forty-three students from Leiden University participated in the study, either for 

course credits or financial compensation (€ 4.50).   

Materials.  A sample of grammatical sequences was generated from grammar G4 to be used as 

the training set (Appendix D). The same 38 unique exemplars were presented. As in Experiment 3, 

they were presented repeatedly (114 learning items in total). In the structure based Starting Small (SS-

S) condition, the exemplars were presented successively in three groups: first all six unique 0-LoE 

sequences, followed by a group of 17 unique 1-LoE sequences, and a group of 15 unique 2-LoE 

exemplars (Appendix D). Following the same procedure, the same 38 sequences were ordered 

according to their length in the Starting Small according to length (SS-L) condition, in which groups 

were determined by string length (varying from 2 syllables to 12 syllables). Eleven groups with unique 

strings were presented successively: two unique strings with length 2, followed by two unique strings 

of length 3, five strings of length 4, three strings of length 5, seven strings of length 6, eight strings of 

length 7, four strings of length 8, three strings of length 9, two strings of length 10, one string of length 

11, and one string of length 12 (see Appendix D).  Within a group, the sequences were presented 

randomly. In the Random condition, the 38 unique strings were presented repeatedly in random 

ordering in one single group. No subsequent repetitions could occur in the random presentation.   
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The test set was made of 22 grammatical and 22 ungrammatical strings. As in Experiments 1-3, 

ungrammatical sequences were created by changing one element of a grammatical test sequence. The 

substituted element was one that was of the proper category (a B was replaced with a B element) but 

from an incorrect subset, hence making an incorrect pair with the corresponding A element. The 

positions in which the substituted elements occurred in the sequences were distributed evenly across 

all items (Appendix D). Since the present grammar G4 generated only six unique 0-LoE sequences, 

these could occur in both the training and test set.  The 1-LoE and 2-LoE test items did not occur in 

the training set.   

Procedure. As in Experiment 1a, 1b, and 3, E-Prime presentation software was used with 

stimuli presented on a computer monitor. Participants were randomly assigned to one of three 

conditions: Starting Small-Structure based (SS-S) (n=15), Starting Small-length based (SS-L) (n=15) 

or Random (n=13). All forty-three participants were instructed that they were participating in a 

memory experiment. Except for changes to the stimuli, and the sequential presentation, all procedural 

details were identical to Experiment 3.  The syllables of a sequence were presented one at a time, in 

the middle of the screen each for a duration of 800 ms. After each completed sequence, a fixation 

cross appeared for 800 ms, after which the next sequence started. During the learning phase, 

participants were given two breaks of one minute. In the SS-S condition, one break was given after the 

group with 0-LoE items, and after the group with 2-LoE items. In the SS-L condition, the breaks were 

after the group with length-4 items and after the group with length-7 items. In the Random condition, 

the breaks were given after the 32nd and after 64th sequence respectively.   

Results and Discussion 

The mean proportion of correct classification was .65 for the Starting Small-Structure group 

(mean number of correct responses is M = 28.5, SD = 8.3), .61 for the Starting Small-Length group 

(M= 26.7, SD = 4.7); and .54 for the Random group (M = 23.8, SD = 4.5). We performed a 3×3 mixed 

ANOVA on mean proportions of accurate responses with Levels of Embedding (1-LoE, 2-LoE and 3-
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LoE) as a within-subjects factor, and Training Regime (Starting Small-Structure, Starting Small-

Length and Random) as a between-subjects factor. Given that sphericity was not violated, we 

examined univariate within-subjects tests. Although we observed a significant main-effect for Levels 

of Embedding (F(2,80) = 5.21, p = .007), the main-effect for Training Regime failed to reach 

significance (F(2,40) = 2.04, p = .14), as was the case for the interaction between the two factors (F < 

1, p = .56). Planned linear contrasts indicated that performance increased with decreasing numbers of 

levels of embeddings (p = .004), and increased as a function of training regime (p = .05). Helmert 

contrasts indicated that average performance in the starting small conditions was marginally better 

than in the random condition (p = .07), and that Starting Small-Structure condition did not have a 

higher performance than Starting Small-Length condition (p = .43). Pairwise comparisons on the 

factor Levels of Embeddings showed that 0-LoE items (M = .65, SD =.17) had a higher accuracy than 

1-LoE items (M = .59, SD =.18; p = .018) and 2-LoE items (M = .57, SD =.17; p = .004), and 

comparisons on the factor Training Regime showed that Starting Small-Structure (M = .65, SD =.19) 

outperformed Random (M = .54, SD =.10; p = .05). All other pairwise comparisons were not 

significant.  

Despite the lack of a significant interaction between Levels of Embedding and Training Regime, 

we performed simple-effects analyses of LoE for SS-S, SS-L and Random conditions separately. None 

of the training conditions showed a significant LoE effect. In the SS-S condition, 0-LoE (M = .68, SD 

= .19) did not have a higher accuracy than both 1-LoE (M = .62, SD = .22; p = .17), and 2-LoE (M = 

.65, SD = .20; p = .31). In the SS-L condition 0-LoE (M = .67, SD = .16) did not have a higher 

accuracy than 1-LoE (M = .62, SD = .16; p = .34), but did have a higher accuracy than 2-LoE (M = 

.55, SD = .14; p = .02). In the random condition, 0-LoE (M = .60, SD = .14) did not have a higher 

accuracy than both 1-LoE (M = .52, SD = .14; p = .08), and 2-LoE (M = .51, SD = .15; p = .14). 

In addition, we also performed simple-effects analyses of the factor Training Regime for the 0-

LoE, 1-LoE and 2-LoE conditions separately. The effect of Training Regime was not significant for 0-
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LoE and 1-LoE items and nearly significant for 3-LoE items (F(2, 40) = 2.58, p = .09). Pairwise 

comparisons for the 1-LoE items that Starting Small-Length nearly outperformed Random (p = .10), 

for 2-LoE items that Starting Small-Structure nearly outperformed Random (p = .05). All other 

pairwise comparisons were not significant. 

Overall, Experiment 4 shows a pattern of results comparable to Experiment 3, whereby 

performance is highest for 0-LoE items, and performance in enhanced when the grammar is 

administered according a training regime that increases incrementally according to structural 

complexity. Also, these two effects appear to occur independently of each other.  

In order to perform more powerful fine-grained tests of our hypotheses, we performed additional 

analyses on the aggregated the data of Experiments 3 and 4 (see Figure 8). Once more, we performed a 

3×3 mixed ANOVA on mean proportions of accurate responses with Levels of Embedding (1-LoE, 2-

LoE and 3-LoE) as a within-subjects factor, and Training Regime (Starting Small-Structure, Starting 

Small-Length and Random) as a between-subjects factor. Due to a violation of sphericity (Mauchly’s 

W = .83, p < .001), we examined multivariate within-subjects tests. We observed significant main-

effects for Levels of Embedding (Wilks’ λ = .87, F(2,93) = 7.05, p < .001), and Training Regime 

(F(2,94) = 11.18, p < .001), and no interaction between the two factors (Wilks’ λ = .95, F(4,186) = 

1.19, p = .32). Planned linear contrasts indicated that performance increased with decreasing numbers 

of levels of embeddings (see Figure 6; p < .001), and also increased as a function of training regime 

(see Figure 7; p < .001). Helmert contrasts indicated that average performance in the starting small 

conditions was higher than in the random condition (p < .01), and that Starting Small-Structure 

resulted in higher performance than Starting Small-Length (p = .02). 

Pairwise comparisons on the factor Levels of Embeddings showed that 0-LoE items (M = .61) 

had a higher accuracy than 1-LoE items (M = .55; p = .009) and 2-LoE items (M = .53; p < .001). 

Pairwise comparisons on the factor Training Regime showed that all comparisons were significant: 

Starting Small-Structure (M = .65) outperformed Starting Small-Length (M = .56; p = .017), and 
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Random (M = .49; p < .001), and Starting Small-Length outperformed Random (p = .022). Also, one-

sample t-tests revealed that both Starting Small groups performed above chance level (Starting Small-

Structure group; t(32) = 4.61, p < .001, Starting Small-Length group; t(32) = 3.69, p <.001). However, 

the Random group did not perform above chance level; t (30) = 0.76, p = .45. In the Starting Small-

Structure groups, six participants performed very highly; above .80, (see Figure 9), suggesting that 

under this learning regime, the system could be fully learned and applied to new items.  

Mean accuracies of grammaticality judgments for test items with 0-, 1- and 2-LoE for each 

condition were; M0LoE = .70, SD0LoE = .20, M1LoE = .62, SD1LoE = .20, M2LoE = .61, SD2LoE = .19 for the 

SS_S group, M0LoE = .63, SD0LoE = .17, M1LoE = .55, SD1LoE = .14, M2LoE = .52, SD2LoE = .11 for the 

SS_L group, M0LoE = .49, SD0LoE = .21, M1LoE = .50, SD1LoE = .12, M2LoE = .48, SD2LoE = .11 for the 

random group.  

Despite the lack of a significant interaction between Levels of Embedding and Training Regime, 

we performed simple-effects analyses of LoE for SS-S, SS-L and Random conditions separately. The 

SS-S condition showed a significant LoE effect (F(2,64) = 6.48, p < .01), where 0-LoE had a higher 

accuracy than both 1-LoE (p < .01), and 2-LoE (p < .01). The SS-L condition also showed a 

significant LoE effect (F(2,64) = 7.17, p < .01), where 0-LoE had a higher accuracy that both 1-LoE (p 

= .018), and 2-LoE (p < .01). The random condition did not show a LoE effect.  

In addition, we also performed simple-effects analyses of the factor Training Regime for the 0-

LoE, 1-LoE and 2-LoE conditions separately. The effect of Training Regime was significant for 0-LoE 

items (F(2, 94) = 9.34, p < .001), 1-LoE items (F(2, 94) = 4.68, p = .012), and 2-LoE items (F(2, 94) = 

7.41, p = .001). Pairwise comparisons for 0-LoE items showed that Starting Small-Structure 

outperformed Random (p < .001), and Starting Small-Length outperformed Random (p = .006), for the 

1-LoE items that Starting Small-Structure nearly outperformed Starting Small-Length (p = .07) and 

outperformed Random (p = .003), for 2-LoE items that Starting Small-Structure outperformed Starting 

Small-Length (p = .01) and Random (p < .001). All other pairwise comparisons were not significant.  
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Figure 6: Mean performance for the three level of embedding conditions for Experiments 3 and 4. 

Error-bars indicate within-subject SE of the mean. 
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Figure 7: Mean performance for Starting Small-Structure, Starting Small-Length and Random training 

conditions for Experiments 3 and 4. Error-bars indicate SE of the mean. 
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Figure 8: Mean performance for Starting Small-Structure, Starting Small-Length and Random training 

conditions as a function of levels of embedding for the aggregated data of Experiments 3 and 4. Error-

bars indicate SE of the mean. 
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Figure 9. Scatterplot of accuracy scores of grammaticality judgments for the three training regimes in 

Experiment 3 and 4. The reference line at .50 represents chance level performance. 

 

 

 

 

 

  

0.25

0.5

0.75

1

0 1 2 3 4

Chart Title

Exp 3 / Exp 4             Exp 3 / Exp 4            Exp 3 / Exp 4
Starting Small-S   Starting Small-L     Random



STARTING SMALL IN ARTIFICIAL GRAMMAR LEARNING 41         

 

 

 

 

 

 

 

 

Figure 10. Regression models with performance for the 0-LoE test items as predictor of performance 

on multiple-embedding test items, for the Starting Small according to Structure group (left graph), for 

the Starting Small according to item Length group (middle graph), and for the Random group (right 

graph). 

 

To test whether participants that were trained using the Starting Small-Structure regime could 

better generalize their knowledge of simple structures to multiple embedded constructions, we fit 

regression models with performance on the 0-LoE items as predictor of performance on multiple-

embedding test items for the aggregated data of Experiments 3 and 4 (see Figure 10).  

Performance on 0-LoE items was a strong predictor for performance on sentences with multiple 

embeddings, for the Starting Small-Structure condition only (R2 = .44; Beta = .66; p < .0001). For the 

Starting Small-Length and Random conditions, the beta coefficients were not significant (R2 = .08; p 

=.12; R2 = .01; p =.63, respectively; see Figure 10).  Moreover, individual differences in the group 

trained on a structurally growing input were larger than in the other groups. Specifically, in the 

Starting Small-Structure group, 7 out of 33 participants almost perfectly learned the grammar (Mean 

accuracy > .80), one in the Starting Small-Length group, and none in the Random group. Furthermore, 

knowledge of the basic structures could reliably predict accuracy for complex ones for Starting Small-
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Structure learners, only. This suggests that these learners were able to make better use of their memory 

for early encoded simple structures, to process the more complex ones.  

 

General Discussion  

Our five experiments provide unique insight into when starting small in the form of staged input 

may help the learner. For four recursive artificial grammars, a starting small training regime was 

compared with a random training regime. For all grammars tested, i.e. a right-branching recursive 

grammar, and three center-embedded recursive grammars, the starting small presentation was either a 

necessary condition for learning, or clearly facilitated learning. The starting small facilitation may rely 

on constraining two aspects of the stimulus input. First, starting small reduces the length of the 

sequence units to be processed initially, and second, it reduces the computational complexity during 

initial learning. Experiments 3 and 4 partially disentangled the effect of length from that of 

complexity, in order to shed light on the mechanism behind the Starting Small effect for learning 

recursion. A starting small regime based on incremental complexity, was most beneficial to learning.  

These data underscore the incremental character of learning complex structures by exposure to 

spoken exemplars (Christiansen & Chater, 2016; Lai & Poletiek, 2011; Lai & Poletiek, 2013; 

MacDonald, 2013): learning to process embedded structures requires an initial exposure period to non-

embedded simple sentences. Once these simple constructions are learned, the transition to complex 

sentences containing the embedding structure becomes easier. Interestingly, this mechanism does not 

appear to work when a starting small regime is implemented according to length of the input. When 

the initially encoded sentences had reduced length but not reduced complexity, our results indicate that 

learning of short sequences did not affect performance on complex stimuli.  

The results clearly suggest that constraining the complexity of the input effectively facilitates 

learning grammars that have a self-embedding recursive structure. Our data suggest that artificial 

recursive structures varying from linear ‘additive’ right-branching structures to center-embedding 
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constructions involving long distance dependencies are learned best with a staged input of exemplars. 

More specifically, staging the input exemplars according to structural complexity, as opposed to 

length, results in the largest facilitation. Learning complex structures from exemplars seems to involve 

a two-stage process where simple units are learned first, after which this knowledge is exploited to 

analyze more complex stimuli containing multiple units. Interestingly, the simple units learned in the 

first stage have been argued to crucially represent events (e.g., agent-action pairs) in the world 

acquired in interaction with caregivers using joint attention (Tomasello, 2003). 

Our findings are in line with previous studies on the learnability of artificial complex structures 

that mirror natural grammar complexity. Previous studies showed that simple artificial grammars 

without recursion could be learned in the typical procedure we used in the present experiments (see 

Reber, 1993 for an overview). Moreover, this learning of simple artificial grammars has been shown to 

have little relationship with intelligence (Reber, Walkenfeld, & Hernstadt, 1991). Thus far, however, 

either no structure learning could be demonstrated (De Vries, Monaghan, Knecht, & Zwitserlood, 

2008) or they demonstrated an effect only if extra-linguistic cues in the input environment were 

present (De Vries, Geukes, Zwitserlood, Petersson & Christiansen, 2012; Lai & Poletiek, 2011, 2013; 

Van den Bos, Christiansen & Misyak, 2012). Elman (1993) first demonstrated the beneficial effect of 

starting small in a computational simulation, using a grammar similar to the ones used in the present 

study. The present study is the first to investigate and compare computational complexity (ordering 

according to structure) and length (ordering according to length) of starting small learning regimes. 

Overall, the present data revealed not only the beneficial effect of a structurally staged input set on 

learning, but also incremental processes that rely on specific aspects of what is recently learned to 

process new incoming input. Third, our replication of the starting small facilitation in a general 

heterogeneous population suggests the effect works independently of intelligence, as also observed in 

the learning of simple artificial grammars.   
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Interestingly, several recent AGL studies on the learnability of complex structure have used 

starting small regimes in their designs, even if it was not the focus of the study, which may have 

contributed to the reported results on learnability. For example, Perfors, Tenenbaum and Regier (2011) 

proposed a Bayesian computational model for inductive learning of a complex artificial phrase 

grammar. The computational model was run with artificial input data based on features of child 

directed speech, where presented items incrementally increased in level of complexity. Interestingly, 

Bahlmann, Schubotz and Friederici (2008) reported higher activation of Broca’s area in the brain for 

participants who learned a recursive artificial grammar than in a group that had learned a non-

recursive artificial grammar using fMRI. Both input sets were organized in a starting small fashion. 

Also, a recent event-related potential (ERP) study investigating the neurophysiological correlates of 

artificial grammar learning, deliberately employed a starting small paradigm to ensure a high level of 

performance (Christiansen, Conway, & Onnis, 2012). These studies further underscore the special 

importance of starting small for learning grammars that contain recursive constructions.   

Translating these results to more realistic situations, what do they tell us about natural language 

learning? To answer this question, we first need to compare the artificial grammar implemented in our 

study to natural language, and secondly, we need to compare the staged input implemented in the lab 

to the linguistic input of an actual language learner, i.e., child directed speech. In natural language, 

recursive constructions occur quite frequently. In most cases, self-referring recursive regularities occur 

as simple left- or right-branching structures as in repeating adjectives (the [big] [red] [plastic] ball) 

and repeating sentential complements ([Mary says] [that Bob thinks] [that Gabby saw Bill]), 

respectively.  Self-embedded structures are less frequent and typically limited to a single level of 

embedding. Sentences with two or more levels of embedding (as in The boy [the girl [the woman 

admires] loves] likes the dog) are difficult to understand (e.g., Blaubergs & Braine, 1974; Wang, 

1970—see Christiansen & MacDonald, 2009, for a review) and practically absent from spoken 

language (Karlsson, 2007). Interestingly, in our data, performance also decreased as sequence 
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complexity increased. The crucial effect of exploiting memorized simple units for understanding 

complex ones with multiple units might reflect how natural language users use their knowledge of 

simple structures to chunk and organize complex structures (Christiansen & Chater, 2016; see e.g., 

McCauley & Christiansen, 2011, 2014, in press, for a relevant computational model).  

Although biological factors appear to put prohibitive limitations on the learning of self-

embedded recursive structure (De Vries et al., 2011, 2012), the experience that a learner has with 

particular recursive constructions also play a key role (Christiansen & MacDonald, 2009; Wells, 

Christiansen, Race, Acheson, & MacDonald, 2009; Christiansen & Chater, 2016). Our results suggest 

that the order in which learners experience recursive structures may play an important role in how well 

such recursive constructions can be mastered. Specifically, starting small makes the basic structure of 

the system salient, and enables learners to focus on the basic structural patterns first, before they are 

faced with complex structures incorporating multiple instances of the basic pattern. Our results also 

suggest that this learning tends to display ‘all-or-nothing’ mastery transitions over time. Hence, if 

natural language input is ordered according to a starting small regime, we would expect facilitation for 

learning recursive structures both in artificial grammars, as here, and in natural language.   

This brings us to the second comparison we need to make in order to assess the validity of the 

present results, which is between the two starting small procedures (structure-based and length-based) 

and natural child directed speech. If the constraints on computational capacity effectively enhance 

natural language learning, then the sentences a learner is exposed to should, over time, become 

gradually more complex rather than longer. Likewise, sentences occurring in child directed speech 

would be expected to be constrained mainly in complexity, but not necessarily in length.  

Studies on early language acquisition consistently find that the language of primary caregivers 

includes fewer complex sentences, and sentences containing no or fewer subordinate clauses than 

adult speech (Brown, 1973; Pine, 1994; Tomasello, 2003).  In addition, the structural complexity of 

early language input is reduced through the use of features marking clause boundaries, like strong 
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variations of pitch at the end of constituents, pauses, lengthening the final syllable of words at the end 

of clauses, and part or whole repetitions of phrases (Cruttenden, 1994). These prosodic features 

facilitate the segmentation of sentences according to syntactic structure and may highlight their 

structural characteristics (see in an AGL context; Morgan, Meier & Newport, 1987). This kind of 

prosodic segmentation in language is consistent with the manipulations in the present experiments: the 

features present in child-directed speech serve to point the listener to the basic structural units first, 

which allow the child to generalize these basic structures to more complex structures. From this 

perspective, the transition from one group of learning items with n levels of embedding to the next 

group with n+1 levels of embedding functionally highlights the boundaries of embedded clauses, 

similarly to prosodic features in natural language. Interestingly, this incremental learning mechanism 

is conditional upon the language allowing for the same basic pattern to be recognized at each level of 

complexity in sentences, and hence, for the learner, at each stage of exposure.  

Although most studies on child-directed speech also mention length constraints as a feature of 

early sentences (Pine, 1994), some complexity-reducing features of child directed speech may actually 

lengthen sentences rather than shorten them, such as repetition of constituents and protracting 

syllables. Consistent with the present findings, this may indicate that length reduction plays a 

subordinate role in comparison to complexity reduction in child-directed speech. Starting small 

orderings according to length may even misdirect the learners’ attention and point them to basic units 

which are structurally non-pertinent, thus hindering their recognition of structural units in more 

complex sentences. These combined experimental and natural language studies lend support to the 

idea that reducing computational complexity (i.e. starting simple) may be more important for learning 

than reducing length (i.e. starting short). This is an area that warrants further research. 

 Besides starting small, a number of recent studies with artificial languages suggest that certain 

extra-linguistic cues, also present in the natural language, substantially facilitate the learning task 

(Christiansen & Dale, 2001; Perruchet & Rey, 2005; Poletiek, 2002; 2006; Poletiek & Chater, 2006; 
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Van den Bos et al., 2012; Van den Bos & Poletiek, 2015).  First, the frequency distribution of a 

learning set may emphasize the structural properties of the underlying grammar. Poletiek and Chater 

(2006), Poletiek (2006), and Lai and Poletiek (2013) showed that presenting more exemplars with low 

complex constructions had a positive effect on learning the full grammar. Indeed, a frequency 

distribution that over-represents simple compared to complex sentences may help learning (Perfors et 

al., 2011), and this overrepresentation has been shown to characterize child directed speech (Pine, 

1994). Second, primacy effects may also contribute to learning in starting small regimes. If learners 

(even adult learners) are better learners at the earlier stages of exposure –as suggested by the primacy 

effect (Newport, Weiss, & Aslin, 2006)– a starting small input enables learners to acquire the basic 

form of a recursive construction during this “sensitive” stage (Lai & Poletiek, 2011). This possibility is 

supported by the findings by Lai and Poletiek (2013) who showed that the occurrence of any 

incidental complex sentence within a group of simple items presented in the earliest stage of exposure 

can already interfere with learning.  

Finally, other types of cues may interact with a starting small effect.  For example, presentation 

modality influences performance in AGL tasks (Conway & Christiansen, 2005; Conway, Ellefson, & 

Christiansen, 2003; Saffran, 2002; see Frost, Armstrong, Siegelman & Christiansen, 2015, for a 

review). Under sequential presentation conditions, humans are better at encoding and processing 

auditory, as compared to visual input; on the other hand, learning is also very effective when visual 

input is presented simultaneously rather than sequentially (Conway & Christiansen, 2009). In three of 

our four experiments, all elements of a stimulus were presented simultaneously. This presentation 

format is commonly used in AGL experimentation and may possibly have enhanced the starting small 

effect for the self-embedded structure in Experiments 1a, 1b (Conway et al., 2003), 2 and 3. In 

particular, long distance dependencies may be easier to recognize when the full string is displayed 

visually, as compared to an auditory presentation where correct parsing depends on the retrieval of 

previously encountered elements. In Experiment 4, we presented the stimulus elements visually, but 
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sequentially, to mimic the incremental memory requirements for processing recursive constructions in 

natural speech. We observed that facilitation due to the starting small learning regime was associated 

with re-use of early learned grammatical features in processing sentences at a later stage. However, 

future work must further specify the contribution of starting small under more naturalistic conditions.   

Distributional characteristics of the input sample have also been shown to affect performance in 

AGL. Poletiek & Van Schijndel (2009) showed that learning was improved when the input sample 

contained sentences that were highly frequent in the full language as compared to a sample containing 

low frequent sentences of equal size, suggesting that high frequent sentences in the language are also 

very informative about the regularities underlying the grammar. Further research is needed to find out 

how this distributional effect relates to the time course effect of starting small.  

Interestingly, the role of stimulus set characteristics, including the starting small effect, may 

provide new insights into how natural language acquisition may be accommodated within learning-by 

-exposure accounts. Our analyses suggest that a structure-based starting small regime is especially 

advantageous for learning complex recursive structures. The starting small facilitation operates on the 

computational aspect of what has to be learned, making use of initially acquired basic chunks. Given 

that recursive structure is an important feature of natural language, and possibly of human cognition 

more broadly, the current set of results may help future studies to explore the extent to which starting 

small may contribute to spoken language acquisition and inductive learning more generally. 
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Appendix A 

 

Experiment 1: Learning exemplars of an artificial right branching recursive grammar (Figure 1a). 

 

 
0 levels of 
embedding 
 

1 level of 
embedding 
 

2 levels of 
embedding 
 

CW CWPT CKMWPH 
CK QZMW QWXTMK 
QZ MKXH MZSHCW 
MW PHQK PVQZST 
MK XTSV XHQKCZ 
PH SVCZ STMWXV 
PV QKPT CWXHSV 
XT QWCK XVCKPT 
SH XTMZ SHPTQZ 
SV CKQW PTSVQW 
 MZPV MZPVXH 
 XVPH QKPHMZ 
 PTCK XTCZMK 
 SHMW PVCZSH 
 QZST QMMKXV 
 STXH MZQWCK 
 CWXV PHXTQK 
 MKCZ QZXVPT 
 PVXT STMWQZ 
 SHQZ MKSVCW 
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Experiment 1: Test materials 

 

Grammatical  
 

Ungrammatical 
 

CZ CT 
QW QH 
QK QV 
MZ MT 
PT PZ 
XH XW 
XV XK 
ST SZ 
PHCW QHCW 
MWQK MWXK 
XHPT XWPT 
CZXV CZXW 
SVMZ CVMZ 
QWSH QWCH 
STPV SZPV 
MKCZ MKCT 
MZSVCW XZSVCW 
PVXHQK PVMHQK 
XTCZSH XTCZQH 
QWMKPT QWMKPZ 
CKMWXV CKMTXV 
PHSTMK PZSTMK 
SVQZXT CVQZXT 
STPHQZ STCHQZ 
XHPVCK XHPVSK 
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Appendix B 

 

Experiment 2: Learning exemplars of an artificial center embedding recursive grammar (Figure 1b).    

 

0 levels of 
embedding 
 

1 level of 
embedding 
 

2 levels of 
embedding 
 

CW CPTW CMPHWK 
CK QMWZ QXMKTW 
QZ MXHK MSCWHZ 
MW PQKH PQSTZV 
MK XSVT XQCZKH 
PH SCZV SMXVWT 
PV QPTK CXSVHW 
XT QCKW XCPTKV 
SH XMZT SPQZTH 
SV CQWK PSQWVT 
 MPVZ MPXHVZ 
 XPHV QPMZHK 
 PCKT XCMKZT 
 SMWH PCSHZV 
 QSTZ QMXVKM 
 SXHT MQCKWZ 
 CXVW PXQKTH 
 MCZK QSPTVZ 
 PXTV SMQZWT 
 SQZH MSCWVK 

 



STARTING SMALL IN ARTIFICIAL GRAMMAR LEARNING 60         

Experiment 2: Test materials 

 

Grammatical  
 

Ungrammatical 
 

CZ CT 
QW QH 
QK QV 
MZ MT 
PT PZ 
XH XW 
XV XK 
ST SZ 
PCWH QCWH 
MQKW MXKW 
XPTH XPTW 
CXVZ CXWZ 
SMZV CMZV 
QSHW QKHW 
SPVT SPVZ 
MCZK MCTK 
MSCWVZ XSCWVZ 
PXQKHV PMQKHV 
XCSHZT XCQHZT 
QMPTKW QMPZKW 
CMXVWK CMXVTK 
PSMKTH PSMKTZ 
SQXTZV CQXTZV 
SPQZHT SCQZHT 
XPCKVH XPSKVH 
  



STARTING SMALL IN ARTIFICIAL GRAMMAR LEARNING 61         

Appendix C 

Experiment 3: Learning and testing stimuli in all conditions:  Starting Small according to number of 

levels of embedding, Starting Small according to length, and Randomly ordered. Squared brackets (not 

presented to participants) indicate embeddings. 

 

Ordering according to Levels of Embedding Ordering according to length Random ordering 

 LoE Length   LoE Length   LoE Length 

QPK 0 3  CK 0 2  C[QP[CK]K]K 2 7 

CWZ 0 3  SV 0 2  C[S[CWZ]V]WZ 2 8 

QPWZ 0 4  CWZ 0 3  CWZ 0 3 

CK 0 2  QPK 0 3  S[S[CK]V]V 2 6 

SV 0 2  S[SV]V 1 4  S[QPWZ]V 1 6 

C[CK]WZ 1 5  QPWZ 0 4  C[C[CK]WZ]K 2 7 

C[CWZ]WZ 1 6  C[SV]WZ 1 5  QPK 0 3 

QP[SV]WZ 1 6  C[CK]WZ 1 5  QP[SV]WZ 1 6 

C[QPK]K 1 5  S[CWZ]V 1 5  C[C[CWZ]WZ]WZ 2 9 

S[QPWZ]V 1 6  C[QPK]K 1 5  C[QPWZ]K 1 6 

QP[QPK]K 1 6  QP[CWZ]K 1 6  C[QP[CWZ]K]WZ 2 9 

S[CWZ]V 1 5  QP[QPK]K 1 6  S[S[SV]V]V 2 6 

C[QPWZ]K 1 6  QP[SV]WZ 1 6  S[SV]V 1 4 

QP[CK]WZ 1 6  S[C[SV]K]V 2 6  QP[CWZ]K 1 5 

S[SV]V 1 4  QP[CK]WZ 1 6  QP[QP[QPWZ]WZ]WZ 2 12 

C[SV]WZ 1 5  C[QPWZ]K 1 6  S[C[SV]K]V 2 6 

QP[QPWZ]WZ 1 8  S[QPWZ]V 1 6  C[CK]WZ 1 5 

QP[CWZ]K 1 6  C[C[SV]K]K 2 6  QP[QP[SV]WZ]K 2 9 

QP[QPK]WZ 1 7  S[S[SV]V]V 2 6  S[QP[SV]WZ]V 2 8 

C[QPWZ]WZ 1 7  S[S[CK]V]V 2 6  QP[C[CK]WZ]WZ 2 9 

S[C[SV]K]V 2 6  C[CWZ]WZ 1 6  S[QP[CWZ]K]V 2 8 

C[QP[QPK]WZ]WZ 2 10  C[S[SV]V]WZ 2 7  QP[QP[CWZ]K]K 2 9 

S[QP[CWZ]K]V 2 8  QP[QPK]WZ 1 7  QP[CK]WZ 1 6 

QP[C[SV]K]WZ 2 8  C[C[CK]WZ]K 2 7  S[C[CK]WZ]V 2 7 

S[S[CK]V]V 2 6  C[S[QPK]V]K 2 7  C[CWZ]WZ 1 6 

S[QP[SV]WZ]V 2 8  C[QP[CK]K]K 2 7  QPWZ 0 4 

QP[S[CK]V]WZ 2 8  S[C[CK]WZ]V 2 7  C[QPWZ]WZ 1 7 

S[C[CK]WZ]V 2 7  C[QPWZ]WZ 1 7  QP[S[QPWZ]V]K 2 9 

QP[C[CK]WZ]WZ 2 9  S[C[QPWZ]K]V 2 8  C[SV]WZ 1 5 

C[C[QPWZ]K]K 2 8  QP[S[CK]V]WZ 2 8  QP[C[SV]K]WZ 2 8 

C[QP[SV]WZ]K 2 8  C[S[CWZ]V]WZ 2 8  S[CWZ]V 1 5 

C[C[SV]K]K 2 6  QP[S[SV]V]WZ 2 8  QP[QPWZ]WZ 1 8 

QP[S[QPWZ]V]K 2 9  QP[QPWZ]WZ 1 8  C[QP[QPK]WZ]WZ 2 10 

QP[C[QPK]WZ]K 2 9  S[QP[CWZ]K]V 2 8  S[C[QPWZ]K]V 2 8 

C[S[CWZ]V]WZ 2 8  QP[C[SV]K]WZ 2 8  QP[S[SV]V]WZ 2 8 

QP[QP[CWZ]K]K 2 9  S[QP[SV]WZ]V 2 8  SV 0 2 

S[QP[QPK]WZ]V 2 9  C[C[QPWZ]K]K 2 8  C[QP[SV]WZ]K 2 8 

C[S[SV]V]WZ 2 7  C[QP[SV]WZ]K 2 8  QP[S[CK]V]WZ 2 8 

S[C[QPWZ]K]V 2 8  S[S[QPWZ]V]V 2 8  CK 0 2 

QP[QP[QPWZ]WZ]WZ 2 12  C[C[CWZ]WZ]WZ 2 9  C[C[QPWZ]WZ]WZ 2 10 
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C[C[CWZ]WZ]WZ 2 9  QP[QP[CWZ]K]K 2 9  C[QPK]K 1 5 

C[QP[CWZ]K]WZ 2 9  QP[C[QPK]WZ]K 2 9  C[S[QPK]V]K 2 7 

QP[S[SV]V]WZ 2 8  QP[S[QPWZ]V]K 2 9  QP[QPK]K 1 5 

C[S[QPK]V]K 2 7  QP[QP[SV]WZ]K 2 9  C[C[QPWZ]K]K 2 8 

C[C[QPWZ]WZ]WZ 2 10  C[QP[CWZ]K]WZ 2 9  QP[QPK]WZ 1 7 

S[S[QPWZ]V]V 2 8  QP[C[CK]WZ]WZ 2 9  S[S[QPWZ]V]V 2 8 

S[S[SV]V]V 2 6  S[QP[QPK]WZ]V 2 9  QP[C[QPK]WZ]K 2 9 

QP[QP[SV]WZ]K 2 9  C[C[QPWZ]WZ]WZ 2 10  S[QP[QPK]WZ]V 2 9 

C[QP[CK]K]K 2 7  C[QP[QPK]WZ]WZ 2 10  C[C[SV]K]K 2 6 

C[C[CK]WZ]K 2 7  QP[QP[QPWZ]WZ]WZ 2 12  C[S[SV]V]WZ 2 7 
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Experiment 3: Test items with ungrammatical elements printed bold. Squared brackets were not 

presented to participants 

 
 
Grammatical  Ungrammatical 
SV CV 
CWZ SK 
QPK QPV 
QPWZ SWZ 
C[CK]K C[CV]K 
C[CWZ]K C[SV]V 
C[QPK]WZ S[CK]K 
C[SV]K C[CWZ]V 
QP[CK]K QP[CV]K 
QP[CWZ]WZ QP[SK]K 
QP[QPWZ]K S[QPV]V 
QP[SV]K C[QPV]WZ 
S[CK]V QP[CWZ]V 
S[QPK]V QP[QPV]K 
C[C[CWZ]K]K C[C[CWZ]K]V 
C[C[QPK]K]K C[C[QPK]V]K 
C[S[CK]V]WZ C[S[CK]K]WZ 
C[S[SV]V]K C[S[SWZ]V]K 
QP[C[CWZ]WZ]WZ QP[C[SV]V]K 
QP[C[SV]K]K QP[S[SV]V]V 
QP[QP[QPWZ]WZ]K S[C[QPK]K]K 
QP[QP[SV]WZ]WZ S[QP[SWZ]K]V 
QP[S[SV]V]K QP[C[CWZ]WZ]V 
S[C[QPK]K]V QP[QP[SV]V]WZ 
S[QP[SV]K]V QP[QP[QPWZ]WZ]V 
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Appendix D 

Experiment 4: Learning and testing stimuli in all conditions:  Starting Small according to number of 

levels of embedding, Starting Small according to length, and Randomly ordered. Squared brackets (not 

presented to participants) indicate embeddings. 

 

Ordering according to Levels of Embedding Ordering according to length Random ordering 

 LoE Length  LoE Length  LoE Length 

bapo 0 2 bapo 0 2 gegagi[bapu]ku 1 6 

bapu 0 2 bapu 0 2 dedi[bapo]to 1 5 

dedito 0 3 dedito 0 3 ba[bapu]po 1 4 

deditu 0 3 deditu 0 3 gegagiko 0 4 

gegagiko 0 4 gegagiko 0 4 ba[dedi[bapo]to]pu 2 7 

gegagiku 0 4 gegagiku 0 4 ba[ba[bapu]po]pu 2 6 

ba[bapo]po 1 4 ba[bapo]po 1 4 dedi[gegagiku]to 1 7 

ba[bapu]po 1 4 ba[bapu]po 1 4 bapo 0 2 

ba[bapo]pu 1 4 ba[bapo]pu 1 4 gegagi[gegagi[bapo]ko]ko 2 10 

ba[deditu]po 1 5 ba[deditu]po 1 5 ba[gegagi[deditu]ku]po 2 9 

dedi[bapo]to 1 5 dedi[bapo]to 1 5 dedi[gegagi[gegagiku]ko]to 2 11 

ba[deditu]pu 1 5 ba[deditu]pu 1 5 gegagi[gegagi[gegagiko]ku]ko 2 12 

gegagi[bapu]ku 1 6 gegagi[bapu]ku 1 6 gegagi[dedito]ku 1 7 

gegagi[bapo]ko 1 6 gegagi[bapo]ko 1 6 gegagi[deditu]ku 1 7 

dedi[dedito]tu 1 6 dedi[dedito]tu 1 6 dedi[gegagiko]tu 1 7 

ba[gegagiku]po 1 6 ba[gegagiku]po 1 6 gegagi[deditu]ko 1 7 

gegagi[deditu]ku 1 7 ba[ba[bapu]po]pu 2 6 dedi[dedi[gegagiku]to]tu 2 10 

dedi[gegagiku]to 1 7 ba[ba[bapo]po]po 2 6 gegagi[dedi[bapu]tu]ko 2 9 

dedi[gegagiko]tu 1 7 ba[ba[bapo]pu]pu 2 6 ba[dedi[gegagiku]to]pu 2 9 

gegagi[dedito]ku 1 7 gegagi[deditu]ku 1 7 ba[ba[bapo]pu]pu 2 6 

gegagi[deditu]ko 1 7 dedi[gegagiku]to 1 7 ba[ba[deditu]po]po 2 7 

gegagi[gegagiku]ku 1 8 dedi[gegagiko]tu 1 7 ba[ba[gegagiku]pu]pu 2 8 

gegagi[gegagiku]ko 1 8 gegagi[dedito]ku 1 7 gegagi[gegagiku]ko 1 8 

ba[ba[bapu]po]pu 2 6 gegagi[deditu]ko 1 7 ba[gegagiku]po 1 6 

ba[ba[bapo]po]po 2 6 ba[dedi[bapo]to]pu 2 7 bapu 0 2 

ba[ba[bapo]pu]pu 2 6 ba[ba[deditu]po]po 2 7 gegagiku 0 4 

ba[dedi[bapo]to]pu 2 7 dedi[ba[bapo]pu]tu 2 7 ba[bapo]pu 1 4 

ba[ba[deditu]po]po 2 7 gegagi[gegagiku]ku 1 8 ba[deditu]pu 1 5 

dedi[ba[bapo]pu]tu 2 7 gegagi[gegagiku]ko 1 8 gegagi[gegagiku]ku 1 8 

ba[ba[gegagiko]po]pu 2 8 ba[ba[gegagiko]po]pu 2 8 ba[ba[gegagiko]po]pu 2 8 

ba[ba[gegagiku]pu]pu 2 8 ba[ba[gegagiku]pu]pu 2 8 dedito 0 3 

gegagi[dedi[bapu]tu]ko 2 9 gegagi[dedi[bapu]tu]ko 2 9 ba[bapo]po 1 4 

ba[gegagi[deditu]ku]po 2 9 ba[gegagi[deditu]ku]po 2 9 gegagi[bapo]ko 1 6 

ba[dedi[gegagiku]to]pu 2 9 ba[dedi[gegagiku]to]pu 2 9 deditu 0 3 
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dedi[dedi[gegagiku]to]tu 2 10 dedi[dedi[gegagiku]to]tu 2 10 ba[deditu]po 1 5 

gegagi[gegagi[bapo]ko]ko 2 10 gegagi[gegagi[bapo]ko]ko 2 10 dedi[dedito]tu 1 6 

dedi[gegagi[gegagiku]ko]to 2 11 dedi[gegagi[gegagiku]ko]to 2 11 ba[ba[bapo]po]po 2 6 

gegagi[gegagi[gegagiko]ku]ko 2 12 gegagi[gegagi[gegagiko]ku]ko 2 12 dedi[ba[bapo]pu]tu 2 7 
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Experiment 4: Test items with ungrammatical elements printed bold. Squared brackets were not 

presented to participants 

 
Grammatical  Ungrammatical 
gegagiko batu 
bapo gegagipu 
dedito dedipo 
deditu baku 
bapu dediko 
gegagiku gegagito 
gegagi[gegagiko]ku ba[gegagiku]tu 
dedi[deditu]to ba[gegagipu]po 
gegagi[bapo]ku dedi[bapo]ku 
ba[dedito]po dedi[gegagito]tu 
dedi[dedito]to gegagi[bapu]to 
ba[bapu]pu gegagi[dedipo]ku 
gegagi[gegagiko]ko gegagi[deditu]to 
ba[gegagiku]pu ba[dedito]tu 
dedi[ba[bapu]po]to gegagi[ba[bapo]ko]ku 
ba[gegagi[dedito]ku]po gegagi[dedi[gegagipu]to]ku 
gegagi[dedi[dedito]to]ko gegagi[dedi[bapu]tu]to 
ba[ba[gegagiko]pu]pu ba[gegagi[bapo]tu]po 
ba[gegagi[gegagiko]ku]po ba[gegagi[dedipu]ko]po 
dedi[gegagi[bapo]ko]to gegagi[dedi[deditu]tu]po 
ba[dedi[deditu]to]pu gegagi[gegagi[gegagiku]tu]ko 
ba[ba[deditu]pu]pu ba[ba[gegagipu]po]pu 
 
 
 


